Print

发布时间: 2018-12-16
摘要点击次数:
全文下载次数:
DOI: 10.11834/jig.180328
2018 | Volume 23 | Number 12




    计算机图形学    




  <<上一篇 




  下一篇>> 





带两个参数的三角多项式曲线曲面构造
expand article info 汪凯, 张贵仓, 龚进慧
西北师范大学, 兰州 730070

摘要

目的 为了使扩展的曲线曲面保留传统Bézier方法以及B样条方法良好性质的同时,具备保形性、形状可调性、高阶连续性以及广泛的应用性,本文在拟扩展切比雪夫空间利用开花的性质构造了一组最优规范全正基,并利用该基进行曲线曲面构造。方法 首先构造一组最优规范全正基,并给出该基生成的拟三次TC-Bézier曲线的割角算法;接着利用最优规范全正基的线性组合构造拟三次均匀TC-B样条基,根据曲线的性质假设拟三次均匀B样条基函数具有规范性和${{\rm{C}}^2}$连续性,进而得到其表达式;然后证明拟三次均匀TC-B样条基具有全正性和高阶连续性;最后定义拟三次均匀TC-B样条曲线曲面,并证明曲线曲面的性质,给出曲线表示整圆和旋转曲面的表示方法,设计出球面和旋转曲面的直接生成方法。结果 实验表明,本文在拟扩展切比雪夫空间构造的具有全正性曲线曲面,不仅能够灵活地进行形状调整,而且具有高阶连续性、保形性。结论 本文在三角函数空间利用两个形状参数进行曲线曲面构造,大量的分析以及案例说明本文构造的曲线曲面不仅保留了传统的Bézier方法以及B样条方法的良好性质,而且具备保形性、形状可调性、高阶连续性以及广泛的应用性,适合用于曲线曲面设计。

关键词

拟扩展切比雪夫空间; 最优规范全正基; 全正性; 高阶连续性; 保形性

Constructing trigonometric polynomial curves and surfaces with two parameters
expand article info Wang Kai, Zhang Guicang, Gong Jinhui
Northwest Normal University, Lanzhou 730070, China
Supported by: National Natural Science Foundation of China (61861040); Gansu Science and Technology Project (17YF1FA119); Gansu Provincial Department of Education Science and Technology Achievements Transformation Project (2017D-09)

Abstract

Objective The Bézier and B-spline curves play an important role in traditional geometric design. With the development of the geometric industry over the recent years, the traditional Bézier and B-spline curves cannot meet people's needs due to defects. At the same time, many rational forms of Bézier curves are proposed, which solve the problems faced by traditional methods. However, rational methods have not only progressive problems, but also employ the improper use of weight factors, which can be destructived to the curve and surface design. In view of the abovementioned problems, a large number of Bernstein-like and B-spline-like basis functions with shape parameters are proposed. These methods are mainly constructed in trigonometric, hyperbolic and exponential function spaces, a combination of said spaces, and polynomial space. Although many improved methods are available, these methods are rarely applied in solving practical problems. In the final analysis, these methods increase the flexibility of the curve by adding shape parameters, compared with the traditional Bézier and B-spline methods. However, the method itself does not have the ability to replace the traditional method. Several aspects still need improvement. For example, the majority of these methods only discuss basic properties, such as non-negativity, partition of unity, symmetry, and linear independence. Shape preservation, total positivity, and variation diminishing are often overlooked, which are important properties for curve design. However, the basis function, which has total positivity, will ensure that the related curve contains variation diminishing and shape preservation. Therefore, possessing total positivity is highly important for basis function. In addition, constructing cubic curves and surfaces remains the main method among the improved methods. In general, these improved methods have ${{\rm{C}}^2}$ continuity, which largely meets engineering requirements. However, in many practical applications, ${{\rm{C}}^2}$ continuity cannot meet current needs. In summary, this study aims enable the extended curve and surface to maintain the good nature of traditional Bézier and B-spline methods, while maintaining shape preservation and adjustability, high-order continuity, and wide applicability. Thus, this article makes use of the blossom property in Quasi Extended Chebyshev space to construct a group of optimal normalized totally positive basis for curve and surface construction. Method In this paper, we first construct a set of optimal normalized totally positive basis and then present a corner cutting algorithm of the cubic TC-Bézier curves generated by the base. Second, it renders use of the linear combination of optimal normalized totally positive basis construct the proposed cubic uniform TC-B spline basis. It assumes that the proposed cubic uniform B-spline basis function is characterized by normalization and continuity according to the nature of the curve, then further obtains its formula. The article proves that the proposed cubic uniform TC-B spline basis features total positivity and high-order continuity. Finally, the curve and surface of the proposed cubic uniform TC-B spline are defined, which proves the nature of the curve and surface. Furthermore, an expressive method of using the curve to show the full circle and rotating surface and direct generation method of spherical and rotating surfaces are provided. Result Analysis show that the TC-Bézier basis function in the ECC space possesse totally positivity, and the cubic uniform TC-B spline basis function in relation to the TC-Bézier basis function also possesses totally positivity. Therefore, the cubic TC-Bézier and cubic uniform B-spline curves that are generated by the corresponding basis functions also have important properties, such as variation diminishing and shape preservation, which further means that the proposed method is suitable for curve design. In addition, this paper also provides a large number of application cases to further show that the method is suitable for curve design. Conclusion We use two-shape parameters in the trigonometric function space for curve design. Surface construction, numerous analyses, and cases indicate that the curves and surfaces constructed retain not only the good properties of the traditional Bézier and B-spline methods, such as affine invariance, convex hull and variation diminishing, which are crucial in curve design but also shape preservation and adjustability, high-order continuity, and wide application. In summary, this paper proposes the trigonometric polynomial curve and surface method with two shape parameters, which solves the shortcomings of the traditional improvement methods in terms of property and high-order continuity. Therefore, the proposed method is more suitable for curve design compared with the traditional improved method.

Key words

quasi extended Chebyshev space; optimal normalized totally positive basis; totally positivity; high-order continuity; shape preserving

0 引言

Bézier曲线以及B样条曲线在传统几何设计中具有举足轻重的作用。近年来,随着几何工业的发展,传统Bézier曲线以及B样条曲线因其本身的缺陷已经很难满足人们的需要。与此同时许多有理形式的Bézier曲线[1-2]被提出来,这解决了传统方法的问题,但有理化方法不仅存在渐进问题,而且权因子的使用不当会对曲线曲面设计产生一定的破坏性[3]。鉴于上述问题,大量带形状参数的类Bernstein基或类B样条基孕育而出,主要集中在三角函数空间[4-9]、双曲函数空间[10-11]、指数函数空间[12-13],以及该类空间与多项式空间的组合空间[14-18]等。

尽管改进的方法有很多,但是这些方法在实际问题的解决中却应用得很少。归根原因,与传统Bézier方法和B样条方法相比,这些方法虽然都通过添加形状参数增加了曲线的灵活性,在某些方面占有优势,但是其方法本身并不具备替代传统方法的能力,需要改进的地方还有很多。比如,这些方法大都只讨论了凸包性、规范性、几何不变性以及对称性等一些基本性质,而传统Bézier方法和B样条方法所拥有的像全正性、变差缩减性和保形性等重要性质往往被忽略。而函数空间基函数的全正性可保证生成曲线具有变差缩减性,也可保证大量的保形性质,并且其中的B基(最优规范全正基)具有最佳的保形效果[19-20]。因此是否具有全正性至关重要[21]。又比如,基于多项式空间构造的曲线曲面不能精确表示除抛物线以外的圆锥曲线;较高的基函数次数会增加曲线曲面的计算复杂度等。

此外,在改进的方法中以2次和3次曲线曲面为主,在通常情况下,这些方法构造的曲线曲面均可达到${{\rm{C}}^2}$连续,这已经能够满足大多数的工程要求。但是如果对连续性有更高的要求,这些方法就有一点捉襟见肘,往往需要提高构造曲线曲面的次数。以B样条曲线曲面为例,注意到,曲线曲面的连续性和局部性与其次数有直接关系,次数越高,连续阶数也越高,但局部性就越差,计算的复杂度也就越高。所以为了达到高阶连续性的特殊要求,就必须牺牲其支配地位的局部性质。因此,在曲线曲面构造时,在不增加运算复杂度以及不影响其局部性质的情况下能够满足高阶连续性的重要性就凸显出来。

由于拟扩展切比雪夫空间(QEC)具有适合构造B基的开花性质,成为适合几何设计的最大一类空间[22-27]。另外,基于三角函数空间的类Bézier基和类B样条基在保形设计中具有巨大的潜力[28-31],并且三角函数空间中的sin $t$和cos $t$连续求导的可循环性也为高阶连续性的曲线曲面的构造提供条件(sin(4)$t$=sin $t$, cos(4)$t$=cos $t$)。为此,本文在文献[32]的基础上,首先证明文献[32]提出的基函数构成QEC空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }=span${1, sin2 $t$, (1-sin $t$)(1-$\alpha $sin $t$), (1-cos $t$)(1-$\beta $cos $t$)}中的一组B基,并给出了该基形成的拟三次TC-Bézier曲线的割角算法。接着在该B基的基础上构造了拟三次均匀B样条基,并提出带两个参数的拟三次TC-B样条曲线和曲面。大量的分析与案例表明,本文构造的曲线曲面不仅保留传统Bézier方法以及B样条方法的所有性质,而且具有计算简单、灵活的形状可调性等特点,并能够精确地表示圆锥曲线、曲面。除此之外,本文构造的三次TC-B样条曲线曲面具有不影响局部性质的高阶连续性,即构造的曲线曲面在支撑域条件下处处具有$C^{2n-1}$($n$=1, 2, 3, …)连续。

1 B基的构造

文献[32]给出了当$t$∈[0, $\mathsf{ π}$/2],$\alpha, \beta $∈[-1, 1]时,含有两个形状参数$\alpha, \beta $的基函数

$ \left\{ \begin{array}{l} {T_0}\left( t \right) = \left( {1 - \sin t} \right)\left( {1 - \alpha \sin t} \right)\\ {T_1}\left( t \right) = \left( {1 + \alpha } \right)\sin t\left( {1 - \sin t} \right)\\ {T_2}\left( t \right) = \left( {1 + \beta } \right)\cos t\left( {1 - \cos t} \right)\\ {T_3}\left( t \right) = \left( {1 - \cos t} \right)\left( {1 - \beta \cos t} \right) \end{array} \right. $ (1)

并分析了其具有非负性、权性、拟对称性、单峰性以及端点性质。但实际上在$\alpha, \beta $∈[-1, 0)时,该基存在的函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$={1, sin2 $t$, (1-sin $t$)(1-$\alpha $sin $t$), (1-cos $t$)(1-$\beta $cos $t$}并不具备开花性质因此并不适合于曲线设计。下面我们证明其在$\alpha, \beta $∈[0, 1]构成一组B基。

对任意的$t$∈[0, $\mathsf{ π}$/2],$\alpha, \beta $∈[0, 1]。考虑在$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中构造B基。则母函数为

$ \mathit{\Phi }\left( t \right) = \left( \begin{array}{l} {\sin ^2}t,\left( {1 - \sin t} \right)\left( {1 - \alpha \sin t} \right),\\ \left( {1 - \cos t} \right)\left( {1 - \beta \cos t} \right) \end{array} \right) $

由文献[22]的定理3.1,只需证明函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$的微分空间

$ {\rm{D}}{\mathit{\boldsymbol{T}}_{\alpha ,\beta }} = \left\{ \begin{array}{l} 2\sin t\cos t,2\alpha \sin t\cos t - \left( {\alpha + 1} \right)\cos t,\\ \left( {\beta + 1} \right)\sin t - 2\beta \sin t\cos t \end{array} \right\} $

为3维QEC空间。

定理1  对于任意的$\alpha, \beta $∈[0, 1],${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为闭空间[0, $\mathsf{ π}$/2]上的一个3维QEC空间。

证明对任意的${\xi _i} = {\bf{R}}$($i$=0, 1, 2),考虑以下的线性组合

$ \begin{array}{*{20}{c}} {{\xi _0}\left[ {2\sin t\cos t} \right] + }\\ {{\xi _1}\left[ {2\alpha \sin t\cos t - \cos t - \alpha \cos t} \right] + }\\ {{\xi _2}\left[ {\left( {\beta + 1} \right)\cos t - 2\beta \sin t\cos t} \right] = 0} \end{array} $ (2)

$t$=0时,由式(2)可得${\xi _1}=0$

$t$=$\mathsf{ π}$/2时,由式(2)可得${\xi _2}=0$

最后可得${\xi _0}=0$。由此可见${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$是个3维空间。

下面先证明${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$是开区间(0, $\mathsf{ π}$/2)上的一个3维完备扩展切比雪夫空间(ECC)。对任意$t$∈[$a, b$]⊂(0, $\mathsf{ π}$/2),令

$ \begin{array}{*{20}{c}} {u\left( t \right) = }\\ {{{\left[ {\frac{{2\alpha \sin t\cos t - \left( {\alpha + 1} \right)\cos t}}{{\sin t\cos t}}} \right]}^\prime } = \left( {\alpha + 1} \right)\frac{{\cos t}}{{{{\sin }^2}t}}} \end{array} $

$ \begin{array}{*{20}{c}} {v\left( t \right) = }\\ {{{\left[ {\frac{{\left( {\beta + 1} \right)\sin t - 2\beta \sin t\cos t}}{{\sin t\cos t}}} \right]}^\prime } = \left( {\beta + 1} \right)\frac{{\sin t}}{{{{\cos }^2}t}}} \end{array} $

直接计算得

$ u'\left( t \right) = \left( {\alpha + 1} \right)\frac{{ - 1 - {{\cos }^2}t}}{{{{\sin }^3}t}} $

$ v'\left( t \right) = \left( {\beta + 1} \right)\frac{{1 + {{\sin }^2}t}}{{{{\cos }^3}t}} $

因此,关于函数$u(t)$$v(t)$的朗斯基行列式[37]

$ \begin{array}{*{20}{c}} {W\left( {u,v} \right)\left( t \right) = u\left( t \right)v'\left( t \right) - u'\left( t \right)v\left( t \right) = }\\ {\left( {\alpha + 1} \right)\left( {\beta + 1} \right)\frac{3}{{{{\sin }^2}t \cdot {{\cos }^2}t}} > 0,\forall t \in \left( {0,{\rm{ \mathsf{ π} }}/2} \right)} \end{array} $

$t$∈[$a, b$],定义以下3个权函数

$ {w_0}\left( t \right) = 2\sin t\cos t $

$ {w_1}\left( t \right) = Au\left( t \right) + Bv\left( t \right) $

$ {w_2}\left( t \right) = C\frac{{W\left( {u,v} \right)\left( t \right)}}{{{{\left[ {Au\left( t \right) + Bv\left( t \right)} \right]}^2}}} $

式中,$A, B, C$是3个任意的正实数。显然,权函数${w_i}(t)$($i$=0, 1, 2)均为闭区间[$a, b$]上${{\rm{C}}^\infty }$光滑且正的有界函数。考虑以下由权函数${w_i}(t)$($i$=0, 1, 2)定义的完备扩展切比雪夫空间

$ {\mathit{u}_0}\left( t \right) = {w_0}\left( t \right) $

$ {u_1}\left( t \right) = {w_0}\left( t \right)\int_a^t {{w_1}\left( {{t_1}} \right){\rm{d}}{t_1}} $

$ {u_2}\left( t \right) = {w_0}\left( t \right)\int_a^t {{w_1}\left( {{t_1}} \right)\int_a^{{t_1}} {{w_2}\left( {{t_2}} \right){\rm{d}}{t_2}{\rm{d}}{t_1}} } $

可以验证,函数$u_0(t)$,$u_1(t)$, $u_2$$(t)$均为函数{2sin $t$cos $t$, 2$\alpha $sin $t$cos $t$-($\alpha $+1)cos $t$,($\beta $+1)sin $t$-2$\beta $sin $t$cos $t$}的线性组合,由文献[22-27, 34]可知,函数空间${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为闭区间[$a, b$]上的ECC空间,由于闭区间[$a, b$]为开区间(0, $\mathsf{ π}$/2)上的任意子区间,因此函数空间${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为开区间(0, $\mathsf{ π}$/2)上的ECC空间。进而,${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的任意线性组合在区间(0, $\mathsf{ π}$/2)上至多只有2个零点。

接着,我们证明${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为闭空间[0, $\mathsf{ π}$/2]上的一个QEC空间。由文献[22-27, 34]知,要证明${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为QEC空间,只需证明${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$空间中的任意非零函数在区间[0, $\mathsf{ π}$/2]上只有两个零点即可。因此,可建立QEC空间中的随机非零函数

$ \begin{array}{*{20}{c}} {F\left( t \right) = {C_1}\left[ {2\sin t\cos t} \right] + }\\ {{C_2}\left[ {2\alpha \sin t\cos t - \left( {\alpha + 1} \right)\cos t} \right] + }\\ {{C_3}\left[ {\left( {\beta + 1} \right)\sin t - 2\beta \sin t\cos t} \right]} \end{array} $

式中,$t$∈[0, $\mathsf{ π}$/2]。通过前面的证明已经知道${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为开区间(0, $\mathsf{ π}$/2)上的ECC空间,函数$F(t)$在(0, $\mathsf{ π}$/2)上至多只有两个零点。

假设$t$=0为函数$F(t)$的零点,则有$C_2$=0。

在此情况下,如果$C_3$=0,则此时$t$=0和$t$=$\mathsf{ π}$/2分别为$F(t)$的单根;

如果$C_1$=0,则$t$=0为$F(t)$的唯一根;

如果$C_1$$C_3$ > 0,即$C_1$ > 0, $C_3$ > 0或$C_1$ < 0, $C_3$ < 0, 则

$ \begin{array}{*{20}{c}} {F\left( t \right) = {C_1}\left[ {2\sin t\cos t} \right] + }\\ {{C_3}\left[ {\left( {\beta + 1} \right)\sin t - 2\beta \sin t\cos t} \right] = }\\ {\sin t\left[ {2{C_1}\cos t + {C_3}\left( {1 + \beta - 2\beta \cos t} \right)} \right]} \end{array} $

很明显$t$=0为$F(t)$的根,而$t$=$\mathsf{ π}$/2不为$F(t)$的根。当$t$∈(0, $\mathsf{ π}$/2)时,cos $t$ > 0。令

$ f\left( x \right) = 1 + \beta - 2\beta \cos \;t > 1 + \beta - 2\beta = 1 - \beta \ge 0 $

所以$F(t)$$t$∈(0, $\mathsf{ π}$/2)时恒正或者恒负。因此$F(t)$$t$∈[0, $\mathsf{ π}$/2]上只有一个零点。

如果$C_1$$C_3$ < 0,即$C_1$ > 0, $C_3$ < 0或$C_1$ < 0, $C_3$ > 0,再令

$ \begin{array}{*{20}{c}} {g\left( t \right) = 2{C_1}\cos t + {C_3}\left( {1 + \beta - 2\beta \cos t} \right)}\\ {g'\left( t \right) = 2\sin t\left( {\beta {C_3} - {C_1}} \right)} \end{array} $

可知当$C_1$ > 0, $C_3$ < 0,$g'(t)$ < 0时,$g(t)$$t$∈(0, $\mathsf{ π}$/2)单调递减;

可知当$C_1$ < 0, $C_3$ > 0,$g'(t)$ > 0时,$g(t)$$t$∈(0, $\mathsf{ π}$/2)单调递增;

可见$g(t)$$t$∈(0, $\mathsf{ π}$/2)上至多只有一个零点,而$t$=0是$F(t)$的根,所以$F(t)$$t$∈[0, $\mathsf{ π}$/2]上至多只有两个零点。类似地,若$t$=$\mathsf{ π}$/2为$F(t)$的零点,可以证明函数$F(t)$在闭空间$t$∈[0, $\mathsf{ π}$/2]上至多只有两个零点。证毕。

由于函数空间${\text{D}}\mathit{\boldsymbol{T}}_{\alpha, \beta }$为闭空间[0, $\mathsf{ π}$/2]上的QEC空间,通过文献[22]可知道函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中存在开花,进而说明函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$适合曲线曲面构造。下面再构造函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的B基。

定理2  对于任意的$\alpha, \beta $∈[0, 1],$t$∈[0, $\mathsf{ π}$/2],函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的B基为

$ \left\{ \begin{array}{l} {T_0}\left( t \right) = \left( {1 - \sin t} \right)\left( {1 - \alpha \sin t} \right)\\ {T_1}\left( t \right) = \left( {1 + \alpha } \right)\sin t\left( {1 - \sin t} \right)\\ {T_2}\left( t \right) = \left( {1 + \beta } \right)\cos t\left( {1 - \cos t} \right)\\ {T_3}\left( t \right) = \left( {1 - \cos t} \right)\left( {1 - \beta \cos t} \right) \end{array} \right. $ (3)

证明对于任意的$\alpha, \beta $∈[0, 1],由母函数的定义可得

$ \begin{array}{*{20}{c}} {\mathit{\Phi }\left( 0 \right) = \left( {0,1,0} \right)}&{\mathit{\Phi }\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( {1,0,1} \right)} \end{array} $

$ \mathit{\Phi '}\left( 0 \right) = \left( {0, - \left( {\alpha + 1} \right),0} \right) $

$ \mathit{\Phi '}\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( {0,0,1 + \beta } \right) $

$ \mathit{\Phi ''}\left( 0 \right) = \left( {2,2\alpha ,1 - \beta } \right) $

$ \mathit{\Phi ''}\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( { - 2,1 - \alpha ,2\beta } \right) $

参考文献[34]中关于开花性质有(关于开花性质的定义可参见文献[34]的基础知识部分, 更加具体细节可参考[35-37],限于篇幅,这里将不再赘述)

$ {\mathit{\Pi }_0} = \mathit{\Phi }\left( 0 \right) = \left( {0,1,0} \right) $

$ {\mathit{\Pi }_3} = \mathit{\Phi }\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( {1,0,1} \right) $

$ \left\{ {{\mathit{\Pi }_1}} \right\} = Os{c_1}\mathit{\Phi }\left( 0 \right) \cap Os{c_2}\mathit{\Phi }\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( {0,0,0} \right) $

$ \left\{ {{\mathit{\Pi }_2}} \right\} = Os{c_2}\mathit{\Phi }\left( 0 \right) \cap Os{c_1}\mathit{\Phi }\left( {{\rm{ \mathsf{ π} }}/2} \right) = \left( {1,0,0} \right) $

$t$∈[0, $\mathsf{ π}$/2],由$\mathit{\Phi }\left( t \right) = \sum\limits_{i = 0}^3 {{A_i}\left( t \right)} {\mathit{\Pi }_i}$可得

$ \left\{ \begin{array}{l} {T_2}\left( t \right) + {T_3}\left( t \right) = {\sin ^2}t\\ {T_0}\left( t \right) = \left( {1 - \sin t} \right)\left( {1 - \alpha \sin t} \right)\\ {T_3}\left( t \right) = \left( {1 - \cos t} \right)\left( {1 - \beta \cos t} \right) \end{array} \right. $

由上式连同 $\sum\limits_{i = 0}^3 {{T_i}\left( t \right)} = 1$,容易推导出式(3)。下面进一步验证$T_i$$(t)$, $i$=0, 1, 2, 3为函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的一组B基。

首先,证明$T_i$$(t)$, $i$=0, 1, 2, 3线性无关。对于任意的${\xi _i} = {\rm{R}}$($i$=0, 1, 2, 3),考虑以下的线性组合

$ \sum\limits_{i = 0}^3 {{\xi _i}{T_i}\left( t \right)} = 0 $ (4)

两边对$t$求导得

$ \sum\limits_{i = 0}^3 {{\xi _i}{{T'}_i}\left( t \right)} = 0 $ (5)

$t$=0分别代入式(4)(5), 得

$ \left\{ \begin{array}{l} {\xi _0} = 0\\ \left( {\alpha + 1} \right)\left( {{\xi _0} - {\xi _1}} \right) = 0 \end{array} \right. $

由此可得${\xi _0}$=${\xi _1}$=0。类似地,将$t$=$\mathsf{ π}$/2代入式(4)(5),可得${\xi _2}$=${\xi _3}$=0。

其次可以很容易验证$T_i$$(t)$, $i$=0, 1, 2, 3在闭区间[0, $\mathsf{ π}$/2]上具有非负性,且在开区间(0, $\mathsf{ π}$/2)上具有严格的正性。

因为$T_i$$(t)$, $i$=0, 1, 2, 3最高次数为2次,因此具有以下的端点性质:

$T_0$(0)=1且$T_0$$(t)$$t$=$\mathsf{ π}$/2处有二重根;

$T_0$($\mathsf{ π}$/2)=1且$T_0$$(t)$$t$=0处有二重根;

对于$i$=1, 2,$T_1$$(t)$$T_2$$(t)$$t$=0和$t$=$\mathsf{ π}$/2均有一个根。

因此文献[22]的定理2.18可知,在$t$∈[0, $\mathsf{ π}$/2],$\alpha, \beta $∈[0, 1]时,式(1)对应的基函数为函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的B基。证毕。

2 拟三次TC-Bézier曲线

定义1  对于给定控制顶点$P_i$${\bf{R}}^2$($i$=0, 1, 2, 3),称

$ \begin{array}{*{20}{c}} {Q\left( t \right) = \sum\limits_{i = 0}^3 {{T_i}\left( t \right){P_i}} }\\ {t \in \left[ {0,{\rm{ \mathsf{ π} }}/2} \right];\;\;\;\alpha ,\beta \in \left[ {0,1} \right]} \end{array} $ (6)

为带两个形状参数$\alpha, \beta $的拟三次TC-Bézier曲线。

文献[32]给出了在$\alpha, \beta $∈[-1, 1]时,拟三次TC-Bézier曲线具有几何不变性与仿射不变性、拟对称性、形状可调性、凸包性、保凸性以及端点性质,因此当$\alpha, \beta $∈[0, 1]时也同样具有该类性质。另外基函数具有全正性,所以易得相应的曲线也具有变差缩减性。

割角算法是生成曲线的一种稳定和高效的算法。为此,将拟三次TC-Bézier曲线写成式(7)的形式。图 1给出了割角算法的例子。

$ \begin{array}{*{20}{c}} {Q\left( t \right) = \left( {\begin{array}{*{20}{c}} {1 - {{\sin }^2}t}&{1 - {{\cos }^2}t} \end{array}} \right) \times }\\ {\left( {\begin{array}{*{20}{c}} {1 - \sin t}&{\sin t}&0\\ 0&{\cos t}&{1 - \cos t} \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} {\frac{{1 - \alpha \sin t}}{{{{\cos }^2}t}}}&{\frac{{\sin t\left( {\alpha - \sin t} \right)}}{{{{\cos }^2}t}}}&0&0\\ 0&{\frac{{\cos t}}{{\sin t + \cos t}}}&{\frac{{\sin t}}{{\sin t + \cos t}}}&0\\ 0&0&{\frac{{\cos t\left( {\beta - \cos t} \right)}}{{{{\sin }^2}t}}}&{\frac{{1 - \beta \cos t}}{{{{\sin }^2}t}}} \end{array}} \right)\\\times \left( {\begin{array}{*{20}{c}} {{P_0}}\\ {{P_1}}\\ {{P_2}}\\ {{P_3}} \end{array}} \right)} \end{array} $ (7)

图 1 割角算法
Fig. 1 Corner cutting algorithm

3 拟三次TC-B样条曲线曲面及应用

3.1 拟三次均匀TC-B样条基的构造

在式(3)的基础上,令欲构造的拟三次均匀TC-B样条基为

$ \left\{ \begin{array}{l} {N_0}\left( t \right) = {x_1}{T_3}\left( t \right)\\ {N_1}\left( t \right) = {x_2}{T_0}\left( t \right) + {x_3}{T_1}\left( t \right) + {x_4}{T_2}\left( t \right) + {x_5}{T_3}\left( t \right)\\ {N_2}\left( t \right) = {x_6}{T_0}\left( t \right) + {x_7}{T_1}\left( t \right) + {x_8}{T_2}\left( t \right) + {x_9}{T_3}\left( t \right)\\ {N_3}\left( t \right) = {x_{10}}{T_0}\left( t \right) \end{array} \right. $ (8)

式中,$T_i$$(t)$($i$=0, 1, 2, 3)为式(3)给出的B基;$x_i$($i$=1, 2, …, 10)为待定系数。

为了确定待定系数的值,首先预设由式(8)定义的结构具有规范性、${{\rm{C}}^2}$连续性。经过简单计算得到待定系数值。

$ \psi = 4 + 3\alpha + 3\beta + 2\alpha \beta $

$ {x_1} = {x_2} = \frac{{1 + \alpha }}{\psi } $

$ {x_3} = {x_8} = \frac{{2 + \alpha + \beta }}{\psi } $

$ {x_9} = {x_{10}} = \frac{{1 + \beta }}{\psi } $

$ {x_4} = {x_5} = {x_6} = {x_7} = \frac{{2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)}}{\psi } $

定义2  给定节点向量$\mathit{\boldsymbol{U}}$, 对任意的$\alpha, \beta $∈[0, 1]和给出系数$x_i$($i$=1, 2, …, 10),则称式(8)为拟三次均匀TC-B样条基。

传统三次B样条基函数为分段函数,这里定义的拟三次均匀TC-B样条基也可用分段形式给出。设$\mathit{\boldsymbol{U}}$=[$u_0$, $u_1$, …, $u_{n+4}$]为均匀节点向量,${u_{j + 1}} - {u_j} = h > 0(j = 0, 1, 2, 3, \cdots, n + 3)$,即

$ \begin{array}{*{20}{c}} {{B_i}\left( u \right) = }\\ {\left\{ \begin{array}{l} {N_{i,0}}\left( {\frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{u - {u_i}}}{h}} \right)\;\;\;\;\;\;\;u \in \left[ {{u_i},{u_{i + 1}}} \right)\\ {N_{i,1}}\left( {\frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{u - {u_{i + 1}}}}{h}} \right)\;\;\;\;\;u \in \left[ {{u_{i + 1}},{u_{i + 2}}} \right)\\ {N_{i,2}}\left( {\frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{u - {u_{i + 2}}}}{h}} \right)\;\;\;\;\;u \in \left[ {{u_{i + 2}},{u_{i + 3}}} \right)\\ {N_{i,3}}\left( {\frac{{\rm{ \mathsf{ π} }}}{2} \cdot \frac{{u - {u_{i + 3}}}}{h}} \right)\;\;\;\;\;u \in \left[ {{u_{i + 3}},{u_{i + 4}}} \right)\\ 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;u \notin \left[ {{u_i},{u_{i + 4}}} \right) \end{array} \right.} \end{array} $ (9)

式中,$i$=0, 1, …, $n$$u$为整体参数。

为此,可以将在每个节点区间$\left[{{u_i}, {u_{i + 1}}} \right]\left( {i = 3, 4, \cdots, n} \right)$用整体参数$u$表示的拟三次均匀TC-B样条基用局部参数$t$∈[0, $\mathsf{ π}$/2]表示,只需作参数变换$u = u\left( t \right) = (1 - \mathsf{ π} t/2){u_i} + \mathsf{ π} t{u_{i + 1}}/2$即可。这样一来有$t = \frac{\mathsf{ π} }{2}\cdot\frac{{u - {u_i}}}{h}$,则定义在任一区间$\left[{{u_i}, {u_{i + 1}}} \right]\left( {i = 3, 4, \cdots, n} \right)$上的三次均匀TC-B样条基均有式(7)的形式。图 2给出了不同参数下的基函数的图像。

图 2 拟三次TC-B样条基函数的图像
Fig. 2 The images of TC-B spline basis function

由拟三次均匀TC-B样条基$T_i$$(t)$($i$=0, 1, 2, 3)的规范性和${{\rm{C}}^2 }$连续性可直接推得以下引理

引理1  以下等式成立

$ \left\{ \begin{array}{l} {x_1} + {x_5} + {x_9} = 1\\ {x_2} + {x_6} + {x_{10}} = 1\\ {x_3} + {x_7} = 1\\ {x_1} = {x_2}\\ {x_5} = {x_6}\\ {x_9} = {x_{10}}\\ \left( {1 + \beta } \right){x_1} = - \left( {1 + \alpha } \right){x_2} + \left( {1 + \alpha } \right){x_3}\\ - \left( {1 + \beta } \right){x_4} + \left( {1 + \beta } \right){x_5} = - \left( {1 + \alpha } \right){x_6} + \left( {1 + \alpha } \right){x_7}\\ - \left( {1 + \beta } \right){x_8} + \left( {1 + \beta } \right){x_9} = - \left( {1 + \alpha } \right){x_{10}}\\ 2\beta {x_1} = 2\alpha {x_2} - 2\left( {1 + \alpha } \right){x_3} + \left( {1 + \beta } \right){x_4} + \left( {1 - \beta } \right){x_5}\\ \left( {1 - \alpha } \right){x_2} + \left( {1 + \alpha } \right){x_3} - 2\left( {\beta + 1} \right){x_4} + 2\beta {x_5} = \\ 2\alpha {x_6} - 2\left( {1 + \alpha } \right){x_7} + \left( {1 + \beta } \right){x_8} + \left( {1 - \beta } \right){x_9}\\ \left( {1 + \alpha } \right){x_6} + \left( {1 + \alpha } \right){x_7} - 2\left( {1 + \beta } \right){x_8} + 2\beta {x_9} = 2\alpha {x_{10}} \end{array} \right. $

3.2 拟三次均匀TC-B样条基的性质

从拟三次均匀TC-B样条基函数的构造方法和B基的性质,容易推出拟三次均匀TC-B样条基函数具有非负性、规范性、拟对称性以及端点性质。下面证明拟三次均匀TC-B样条基函数具有线性无关性、全正性以及${{\rm{C}}^{2n - 1}}$($n$=1, 2, 3, …)连续性。

定理3线性无关性。即对任意$\alpha, \beta $∈(0, 1],$t$∈[0, $\mathsf{ π}$/2],{$N_0$$(t)$, $N_1$$(t)$, $N_2$$(t)$, $N_3$$(t)$}线性无关。

证明:对任意 ${\xi _i} = {\bf{R}}$($i$=0, 1, 2, 3),$t$∈[0, $\mathsf{ π}$/2],考虑

$ {\xi _0}{N_0}\left( t \right) + {\xi _1}{N_1}\left( t \right) + {\xi _2}{N_2}\left( t \right) + {\xi _3}{N_3}\left( t \right) = 0 $

整理有

$ \begin{array}{*{20}{c}} {\left( {{x_2}{\xi _1} + {x_6}{\xi _2} + {x_{10}}{\xi _3}} \right){T_0}\left( t \right) + }\\ {\left( {{x_3}{\xi _1} + {x_7}{\xi _2}} \right){T_1}\left( t \right) + }\\ {\left( {{x_4}{\xi _1} + {x_8}{\xi _2}} \right){T_2}\left( t \right) + }\\ {\left( {{x_1}{\xi _0} + {x_5}{\xi _1} + {x_9}{\xi _2}} \right){T_3}\left( t \right) = 0} \end{array} $

因为{$T_0$$(t)$, $T_1$$(t)$, $T_2$$(t)$, $T_3(t)$}线性无关,所以

$ \left\{ \begin{array}{l} {x_2}{\xi _1} + {x_6}{\xi _2} + {x_{10}}{\xi _3} = 0\\ {x_3}{\xi _1} + {x_7}{\xi _2} = 0\\ {x_4}{\xi _1} + {x_8}{\xi _2} = 0\\ {x_1}{\xi _0} + {x_5}{\xi _1} + {x_9}{\xi _2} = 0 \end{array} \right. $

相应系数行列式有

$ \begin{array}{*{20}{c}} {\left| \mathit{\boldsymbol{D}} \right| = \left| {\begin{array}{*{20}{c}} 0&{{x_2}}&{{x_6}}&{{x_{10}}}\\ 0&{{x_3}}&{{x_7}}&0\\ 0&{{x_4}}&{{x_8}}&0\\ {{x_1}}&{{x_5}}&{{x_9}}&0 \end{array}} \right| = - {x_1}{x_{10}}\left( {{x_3}{x_8} - {x_4}{x_7}} \right) = }\\ {{x_1}{x_{10}}\frac{{4{{\left( {1 + \alpha } \right)}^2}{{\left( {1 + \beta } \right)}^2} - {{\left( {2 + \alpha + \beta } \right)}^2}}}{{{\psi ^2}}} = {x_1}{x_{10}} \cdot }\\ {\frac{{\left( {2\alpha \beta + \alpha + \beta } \right) \cdot \left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right) + 2 + \alpha + \beta } \right]}}{{{\psi ^2}}} > 0} \end{array} $

因此{$N_0$$(t)$, $N_1$$(t)$, $N_2$$(t)$, $N_3$$(t)$}线性无关。

定理4  全正性。对任意$\alpha, \beta $∈(0, 1],$t$∈[0, $\mathsf{ π}$/2],($N_0$$(t)$, $N_1$$(t)$, $N_2$$(t)$, $N_3$$(t)$)构成函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$中的一组规范全正基。

证明:对任意的$\alpha, \beta $∈(0, 1],对任意$t$∈[0, $\mathsf{ π}$/2],容易验证

$ \left( {{N_0},{N_1},{N_2},{N_3}} \right) = \left( {{T_3},{T_2},{T_1},{T_0}} \right)\mathit{\boldsymbol{H}} $

其中转换矩阵为

$ \mathit{\boldsymbol{H}} = \left[ {\begin{array}{*{20}{c}} {{x_1}}&{{x_5}}&{{x_9}}&0\\ 0&{{x_4}}&{{x_8}}&0\\ 0&{{x_3}}&{{x_7}}&0\\ 0&{{x_2}}&{{x_6}}&{{x_{10}}} \end{array}} \right] $

由定理2可知,($T_0$, $T_1$, $T_2,\ T_3$)为函数空间$\mathit{\boldsymbol{T}}_{\alpha, \beta }$的B基。因此,根据文献[20],($N_0$, $N_1$, $N_2$, $N_3$)为函数空间的一组规范全正基的必要条件是$\mathit{\boldsymbol{H}}$为奇异随机全正矩阵。显然$\mathit{\boldsymbol{H}}$中的每个元$x_i$ > 0($i$=1, 2, …, 10)。另外,由引理1易知$\mathit{\boldsymbol{H}}$中的各行和为1,所以$\mathit{\boldsymbol{H}}$为随机矩阵。直接计算可得

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_5}}&{{x_9}}\\ {{x_4}}&{{x_8}} \end{array}} \right| = {x_8} \cdot {x_5} - {x_9} \cdot {x_4} = \\ \frac{{2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)}}{\psi }\frac{{1 + \alpha }}{\psi } > 0 \end{array} $

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_5}}&{{x_9}}\\ {{x_3}}&{{x_7}} \end{array}} \right| = {x_7} \cdot {x_5} - {x_9} \cdot {x_3} = \frac{{{{\left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)} \right]}^2}}}{{{\psi ^2}}} - \\ \frac{{1 + \beta }}{\psi } \cdot \frac{{2 + \alpha + \beta }}{\psi } = \\ \left[ \begin{array}{l} \frac{{4{\alpha ^2}{\beta ^2} + 8{\alpha ^2}\beta + 4{\alpha ^2} + 8\alpha {\beta ^2}}}{{{\psi ^2}}} + \\ \frac{{15\alpha \beta + 7\alpha + 3{\beta ^2} + 5\beta + 2}}{{{\psi ^2}}} \end{array} \right] > 0 \end{array} $

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_5}}&{{x_9}}\\ {{x_2}}&{{x_6}} \end{array}} \right| = {x_6} \cdot {x_5} - {x_9} \cdot {x_2} = \frac{{{{\left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)} \right]}^2}}}{{{\psi ^2}}} - \\ \frac{{1 + \alpha }}{\psi } \cdot \frac{{1 + \beta }}{\psi } = \\ \frac{{\left( {1 + \alpha } \right)\left( {1 + \beta } \right)\left[ {4\left( {1 + \alpha } \right)\left( {1 + \beta } \right) - 1} \right]}}{{{\psi ^2}}} > 0 \end{array} $

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_4}}&{{x_8}}\\ {{x_3}}&{{x_7}} \end{array}} \right| = {x_4} \cdot {x_7} - {x_3} \cdot {x_8} = \\ \frac{{{{\left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)} \right]}^2}}}{{{\psi ^2}}} - \frac{{{{\left[ {2 + \alpha + \beta } \right]}^2}}}{{{\psi ^2}}} = \\ \frac{{\left( {2\alpha \beta + \alpha + \beta } \right)\left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right) + 2 + \alpha + \beta } \right]}}{{{\psi ^2}}} > 0 \end{array} $

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_4}}&{{x_8}}\\ {{x_2}}&{{x_6}} \end{array}} \right| = {x_4} \cdot {x_6} - {x_2} \cdot {x_8} = \\ \frac{{{{\left[ {2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)} \right]}^2}}}{{{\psi ^2}}} - \frac{{\left( {2 + \alpha + \beta } \right)\left( {1 + \alpha } \right)}}{{{\psi ^2}}} = \\ \left[ \begin{array}{l} \frac{{4{\alpha ^2}{\beta ^2} + 8{\alpha ^2}\beta + 4{\alpha ^2} + 8\alpha {\beta ^2}}}{{{\psi ^2}}} + \\ \frac{{16\alpha \beta + 8\alpha + 4{\beta ^2} + 8\beta + 2}}{{{\psi ^2}}} \end{array} \right] > 0 \end{array} $

$ \begin{array}{l} \left| {\begin{array}{*{20}{c}} {{x_3}}&{{x_7}}\\ {{x_2}}&{{x_6}} \end{array}} \right| = {x_3} \cdot {x_6} - {x_2} \cdot {x_7} = \frac{{2\left( {1 + \alpha } \right)\left( {1 + \beta } \right)}}{\psi } \cdot \\ \left( {\frac{{2 + \alpha + \beta }}{\psi } - \frac{{1 + \alpha }}{\psi }} \right) = \frac{{2\left( {1 + \alpha } \right){{\left( {1 + \beta } \right)}^2}}}{{{\psi ^2}}} > 0 \end{array} $

据此容易验证$\mathit{\boldsymbol{H}}$的子行列式均大于0。故$\mathit{\boldsymbol{H}}$为非奇异全正矩阵。证毕。

定理5  连续性。对于均匀节点向量$\mathit{\boldsymbol{U}} = [{u_0}, {u_1}, {u_2}, \cdots, {u_{n + 4}}]$,当$\alpha, \beta $∈[0, 1]时,拟三次均匀B样条基$B_i$$(u)$在所有节点上具有 ${{\rm{C}}^{2n - 1}}$($n$=1, 2, 3, …)连续。

证明:不失一般性,考虑拟三次均匀TC-B样条基$B_i$$(u)$在节点 ${u_{i + 1}}$上的连续性。而当$u_{i + 1}^ - = (1 - 2t/\mathsf{ π} ){u_{i + 1}} + 2t/\mathsf{ π} {u_{i + 2}}$时,局部参数有$t$=0,当$u_{i + 1}^ + = (1 - 2t/\mathsf{ π} ){u_i} + 2t/\mathsf{ π} {u_{i + 1}}$时,局部参数$t$=$\mathsf{ π}$/2,因此要想证明拟三次均匀B样条基$B_i$$(u)$在每一个节点处具有${{\rm{C}}^{2n - 1}}$($n$=1, 2, 3, …)连续,只需证明$N_i^{(2n - 1)}(\mathsf{ π} /2) = N_{i + 1}^{(2n - 1)}\left( 0 \right)\left( {i = 0, 1, 2} \right)$$N_3^{(2n - 1)}(\mathsf{ π} /2) = N_0^{(2n - 1)}\left( 0 \right)$即可。在证明拟三次均匀TC-B样条基$B_i$$(u)$在每一个节点处具有${{\rm{C}}^{2n - 1}}$连续之前,先利用数学归纳法证明式(3)的B基的$2n-1$($n$=1, 2, 3, …)阶导数具有形式

$ \left\{ \begin{array}{l} T_0^{\left( {2n - 1} \right)} = {\left( { - 1} \right)^n}\left[ {\left( {1 + \alpha } \right)\cos t + {2^{2n - 2}}\alpha \sin 2t} \right]\\ T_1^{\left( {2n - 1} \right)} = {\left( { - 1} \right)^n}\left( {1 + \alpha } \right)\left( { - \cos t + {2^{2n - 2}}\sin 2t} \right)\\ T_2^{\left( {2n - 1} \right)} = {\left( { - 1} \right)^n}\left( {1 + \beta } \right)\left( {\sin t - {2^{2n - 2}}\sin 2t} \right)\\ T_3^{\left( {2n - 1} \right)} = {\left( { - 1} \right)^n}\left[ { - \left( {\beta + 1} \right)\sin t + {2^{2n - 2}}\beta \sin 2t} \right] \end{array} \right. $

1) 当$n$=1时,式(3)对应B基的一阶导数为

$ \left\{ \begin{array}{l} {{T'}_0} = - \left( {1 + \alpha } \right)\cos t - \alpha \sin 2t\\ {{T'}_1} = \left( {1 + \alpha } \right)\left( {\cos t - \sin 2t} \right)\\ {{T'}_2} = \left( {1 + \beta } \right)\left( { - \sin t + \sin 2t} \right)\\ {{T'}_3} = \left( {1 + \beta } \right)\sin t - \beta \sin 2t \end{array} \right. $

显然成立。

2) 假设当$n=k$时成立,即式(3)对应B基的$2k-1$阶导数为

$ \left\{ \begin{array}{l} T_0^{\left( {2k - 1} \right)} = {\left( { - 1} \right)^k}\left[ {\left( {1 + \alpha } \right)\cos t + {2^{2k - 2}}\alpha \sin 2t} \right]\\ T_1^{\left( {2k - 1} \right)} = {\left( { - 1} \right)^k}\left( {1 + \alpha } \right)\left( { - \cos t + {2^{2k - 2}}\sin 2t} \right)\\ T_2^{\left( {2k - 1} \right)} = {\left( { - 1} \right)^k}\left( {1 + \beta } \right)\left( {\sin t - {2^{2k - 2}}\sin 2t} \right)\\ T_3^{\left( {2k - 1} \right)} = {\left( { - 1} \right)^k}\left[ { - \left( {\beta + 1} \right)\sin t + {2^{2k - 2}}\beta \sin 2t} \right] \end{array} \right. $

对式(3)对应B基的$2k-1$阶导数再连续地进行两次求导,经过简单的运算有

$ \left\{ \begin{array}{l} {\left[ {T_0^{\left( {2k - 1} \right)}} \right]^{\prime \prime }} = {\left( { - 1} \right)^{k + 1}}\left[ {\left( {1 + \alpha } \right)\cos t + } \right.\\ \left. {{2^{2\left( {k + 1} \right) - 2}}\alpha \sin 2t} \right] = T_0^{\left( {2\left( {k + 1} \right) - 1} \right)}\\ {\left[ {T_1^{\left( {2k - 1} \right)}} \right]^{\prime \prime }} = {\left( { - 1} \right)^{k + 1}}\left( {1 + \alpha } \right) \cdot \\ \left( { - \cos t + {2^{2\left( {k + 1} \right) - 2}}\sin 2t} \right) = T_1^{\left( {2\left( {k + 1} \right) - 1} \right)}\\ {\left[ {T_2^{\left( {2k - 1} \right)}} \right]^{\prime \prime }} = {\left( { - 1} \right)^{k + 1}}\left( {1 + \beta } \right) \cdot \\ \left( {\sin t - {2^{2\left( {k + 1} \right) - 2}}\sin 2t} \right) = T_2^{\left( {2\left( {k + 1} \right) - 1} \right)}\\ {\left[ {T_3^{\left( {2k - 1} \right)}} \right]^{\prime \prime }} = {\left( { - 1} \right)^{k + 1}}\left[ { - \left( {\beta + 1} \right)\sin t + } \right.\\ \left. {{2^{2\left( {k + 1} \right) - 2}}\beta \sin 2t} \right] = T_3^{\left( {2\left( {k + 1} \right) - 1} \right)} \end{array} \right. $

显然对$n=k+1$时也成立。结论得证。下面再证明拟三次均匀TC-B样条基$B_i$$(u)$在每一个节点处具有${{\rm{C}}^{2n - 1}}$连续。

$ \begin{array}{l} N_0^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = {x_1}T_3^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = \\ {\left( { - 1} \right)^n}\left[ { - \left( {\beta + 1} \right)} \right]\frac{{1 + \alpha }}{\psi } \end{array} $

$ \begin{array}{l} N_1^{\left( {2n - 1} \right)}\left( 0 \right) = {x_2}T_0^{\left( {2n - 1} \right)}\left( 0 \right) + {x_3}T_1^{\left( {2n - 1} \right)}\left( 0 \right) + \\ {x_4}T_2^{\left( {2n - 1} \right)}\left( 0 \right) + {x_5}T_3^{\left( {2n - 1} \right)}\left( 0 \right) = \\ {\left( { - 1} \right)^n}\left[ { - \left( {1 + \beta } \right)} \right]\frac{{1 + \alpha }}{\psi } \end{array} $

$ \begin{array}{l} N_1^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = {x_2}T_0^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {x_3}T_1^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + \\ {x_4}T_2^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {x_5}T_3^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = 0 \end{array} $

$ \begin{array}{l} N_2^{\left( {2n - 1} \right)}\left( 0 \right) = {x_6}T_0^{\left( {2n - 1} \right)}\left( 0 \right) + {x_7}T_1^{\left( {2n - 1} \right)}\left( 0 \right) + \\ {x_8}T_2^{\left( {2n - 1} \right)}\left( 0 \right) + {x_9}T_3^{\left( {2n - 1} \right)}\left( 0 \right) = 0 \end{array} $

$ \begin{array}{l} N_2^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = \\ {x_6}T_0^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {x_7}T_1^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + \\ {x_8}T_2^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {x_9}T_3^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = \\ {\left( { - 1} \right)^n}\left( {1 + \alpha } \right)\frac{{1 + \beta }}{\psi } \end{array} $

$ \begin{array}{l} N_3^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = {x_{10}}T_0^{\left( {2n - 1} \right)}\left( {{\rm{ \mathsf{ π} }}/2} \right) = 0\\ N_0^{\left( {2n - 1} \right)}\left( 0 \right) = {x_1}T_3^{\left( {2n - 1} \right)}\left( 0 \right) = 0 \end{array} $

显然有 $N_i^{(2n - 1)}(\mathsf{ π} /2) = N_{i + 1}^{(2n - 1)}\left( 0 \right)\left( {i = 0, 1, 2} \right)$$N_3^{(2n - 1)}(\mathsf{ π} /2) = N_{0}^{(2n - 1)}\left( 0 \right)$。证毕。

3.3 拟三次均匀B样条曲线

3.3.1 曲线的定义与性质

定义3  给定控制顶点 ${P_i} \in {{\bf{R}}^2}$, $i$=0, 1, 2, 3, …, $n$,均匀节点向量$\mathit{\boldsymbol{U}} = [{u_0}, {u_1}, \cdots, {u_{n + 4}}]$,参数$\alpha, \beta $∈[0, 1],可以定义一条分段曲线

$ Q\left( u \right) = \sum\limits_{i = 0}^n {{P_i}{B_i}\left( u \right)} ,u \in \left[ {{u_3},{u_{n + 1}}} \right] $

式中,$B_i$$(u)$($i=0, 1, 2, \cdots , n$)由式(6)给出。曲线$Q(u)$定义在区间$u \in \left[{{u_i}, {u_{i + 1}}} \right] \subset \left[{{u_3}, {u_{n + 1}}} \right]$上的那一段可以表示成$q(u)$$\sum\limits_{j = i - 3}^i {{B_j}\left( u \right){P_j}} $,也可以用局部参数表示成

$ {R_i}\left( t \right) = Q\left( {u\left( t \right)} \right) = \sum\limits_{k = 0}^3 {{P_{i - k}}{N_k}\left( t \right)} $ (10)

式中,$u=u(t)$=$(1 - 2t/\mathsf{ π} ){u_i} + 2t/\mathsf{ π} {u_{i + 1}}$$t = \frac{\mathsf{ π} }{2} \cdot \frac{{u - {u_i}}}{h} \in \left[{0, \mathsf{ π} /2} \right]$, $i = 3, 4, 5, \cdots, n$$h>0$为节点区间长度;基函数$N_k$$(t)$($k$=0, 1, 2, 3)由式(5)给出。称$Q(u)$为拟三次均匀TC-B样条曲线,$R_i$$(t)$为拟三次均匀TC-B样条曲线段。

由拟三次均匀TC-B样条基的性质,可以得到拟三次均匀TC-B样条曲线具有几何不变性与仿射不变性、拟对称性、端点性质以及凸包性,由拟三次均匀TC-B样条基的全正基又可推出拟三次均匀TC-B样条曲线具有变差缩减性,进而又可推出曲线具有保凸性。这说明曲线$Q(u)$适用于曲线设计。

与传统B样条方法相同,拟三次均匀TC-B样条曲线也具有局部调整性质,在不改变控制顶点的情况下,可以通过改变参数值对拟三次均匀TC-B样条曲线进行局部调整。为了方便讨论将式(10)写成

$ \begin{array}{*{20}{c}} {{R_i}\left( t \right) = }\\ {\left( {{x_2}{P_{i - 1}} + {x_6}{P_{i - 2}} + {x_{10}}{P_{i - 3}}} \right){T_0}\left( t \right) + }\\ {\left( {{x_3}{P_{i - 1}} + {x_7}{P_{i - 2}}} \right){T_1}\left( t \right) + }\\ {\left( {{x_4}{P_{i - 1}} + {x_8}{P_{i - 8}}} \right){T_2}\left( t \right) + }\\ {\left( {{x_1}{P_i} + {x_5}{P_{i - 1}} + {x_9}{P_{i - 2}}} \right){T_3}\left( t \right)} \end{array} $ (11)

故可知,若改变节点区间$\left[{{u_i}, {u_{i + 1}}} \right]$上的参数$\alpha $将影响区间为$\left[{{u_{i-2}}, {u_{i + 2}}} \right]$的4段曲线形状,而形状参数$\beta $影响区间为$\left[{{u_{i-1}}, {u_{i + 3}}} \right]$的4段曲线形状。进一步可以根据式(11)来估计拟三次均匀TC-B样条曲线$R_i$$(u)$随着形状参数的改变曲线形状变化的趋势。随着参数$\alpha $$\beta $的增加,控制点$P_{i-3}$$P_i$的系数减小而控制点$P_{i-2}$, $P_{i-1}$的系数增大。从而,随着参数$\alpha $$\beta $的增加,曲线$R_i$$(u)$趋向边$P_{i-2}$$P_{i-1}$图 3给出了在控制顶点相同时参数$\alpha, \beta $对曲线的影响效果。

图 3 参数对拟三次均匀TC-B样条曲线的影响效果
Fig. 3 The effect of the parameters on the cubic uniform TC-B spline curve

相较于传统B样条曲线,拟三次均匀TC-B样条曲线具有更好的连续性,根据定理5可推出以下的连续性质。

定理6  对均匀节点向量$\mathit{\boldsymbol{U}}$,当$\alpha, \beta $∈[0, 1],拟三次均匀TC-B样条曲线$Q(u)$在每个节点处不仅具有${{\rm{C}}^1 }$, ${{\rm{C}}^2 }$连续,而且具有${\rm{C}}^{2n-1}$($n$=1, 2, 3, …)连续。

证明:不失一般性,只考虑拟三次均匀TC-B样条曲线在节点${u_{i + 1}}$上的连续性。由曲线的定义可知,$Q(u)$在区间$\left[{{u_{i+1}}, {u_{i + 2}}} \right]$和区间$\left[{{u_i}, {u_{i + 1}}} \right]$的曲线段可分别表示为

$ \begin{array}{*{20}{c}} {Q\left( u \right) = {R_{i + 1}}\left( t \right) = {P_{i + 1}}{N_0}\left( t \right) + {P_i}{N_1}\left( t \right) + }\\ {{P_{i - 1}}{N_2}\left( t \right) + {P_{i - 2}}{N_3}\left( t \right),u \in \left[ {{u_{i + 1}},{u_{i + 2}}} \right]}\\ {Q\left( u \right) = {R_i}\left( t \right) = {P_i}{N_0}\left( t \right) + {P_{i - 1}}{N_1}\left( t \right) + }\\ {{P_{i - 2}}{N_2}\left( t \right) + {P_{i - 3}}{N_3}\left( t \right),u \in \left[ {{u_i},{u_{i + 1}}} \right]} \end{array} $ (12)

所以

$ \begin{array}{*{20}{c}} {Q\left( {u_{i + 1}^ - } \right) = {R_{i + 1}}\left( 0 \right) = }\\ {{P_{i + 1}}{N_0}\left( 0 \right) + {P_i}{N_1}\left( 0 \right) + {P_{i - 1}}{N_2}\left( 0 \right) + {P_{i - 2}}{N_3}\left( 0 \right)}\\ {Q\left( {u_{i + 1}^ + } \right) = {R_i}\left( {{\rm{ \mathsf{ π} }}/2} \right) = }\\ {{P_i}{N_0}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {P_{i - 1}}{N_1}\left( {{\rm{ \mathsf{ π} }}/2} \right) + }\\ {{P_{i - 2}}{N_2}\left( {{\rm{ \mathsf{ π} }}/2} \right) + {P_{i - 3}}{N_3}\left( {{\rm{ \mathsf{ π} }}/2} \right)} \end{array} $

由定理5知道$N_i^{\left( {2n - 1} \right)}(\mathsf{ π} /2) = N_{i + 1}^{\left( {2n - 1} \right)}\left( 0 \right)\left( {i = 0, 1, 2} \right) $$N_3^{\left( {2n - 1} \right)}(\mathsf{ π} /2) = N_0^{\left( {2n - 1} \right)}\left( 0 \right) = 0$,所以有${Q^{\left( {2n - 1} \right)}}(u_{i + 1}^ - ) = {Q^{\left( {2n - 1} \right)}}(u_{i + 1}^ + )$($n$=1, 2, 3, …),所以拟三次均匀TC-B样条曲线具有${{\rm{C}}^{2n - 1}}$连续,当$n$=1时可知曲线也具有${{\rm{C}}^1 }$连续。而由引理1和式(12)知道,在节点${u_{i + 1}}$处拟三次均匀TC-B样条曲线具有${{\rm{C}}^2 }$连续。证毕。

3.3.2 曲线的应用

案例1  整圆的精确表示

拟三次均匀TC-B样条曲线也可精确地表示圆锥曲线,但与文献[32]中方法不同的是,它不需通过图像拼接或对称变换就可以一次生成整圆。当$\alpha $=$\beta $=1,$a=b$时,由控制顶点${P_0} = \left( {X, Y + a} \right)$${P_1} = \left( {X + a, Y} \right) $${P_2} = \left( {X, Y - a} \right)$${P_3} = \left( {X - a, Y} \right)$${P_4} = {P_0}, {P_5} = {P_1}, {P_6} = {P_2}$,确定的拟三次均匀TC-B样条曲线可表示整圆,如图 4所示。

图 4 拟三次均匀TC-B样条曲线的整圆表示
Fig. 4 The full circle representation of cubic uniform TC-B spline curve

案例2  旋转体的生成

图 5(a)(c)分别给出了在给定控制多边形的情况下,不同参数生成的花瓶旋转曲面的母线,其中图 5(a)的参数为$\alpha $=$\beta $=0,图 5(c)的参数为$\alpha $=$\beta $=1。而图 5(b)(d)分别是图 5(a)(c)$y$轴生成的旋转曲面,其中$\theta $∈[0, $\mathsf{ π}$/2]。不难发现,在控制顶点确定的情况下,通过调整参数,拟三次均匀TC-B样条曲线可以生成具有不同轮廓的花瓶旋转曲面。

图 5 拟三次均匀TC-B样条曲线表示旋转体
Fig. 5 Cubic uniform TC-B spline curve represent the rotating body((a)$\alpha $=$\beta $=0; (b)$\alpha $=$\beta $=0; (c)$\alpha $=$\beta $=1; (d)$\alpha $=$\beta $=1)

3.4 拟三次均匀TC-B样条曲面

3.4.1 曲面的定义与性质

定义4  给定控制顶点 ${P_{i, j}} \in {{\bf{R}}^3}\left( {i = 0, 1, \cdots, m;j = 0, 1, \cdots, n} \right)$,两组节点向量$\mathit{\boldsymbol{U = }}\left[{{u_0}, {u_1}, \cdots, {u_{n + 4}}} \right]$$\mathit{\boldsymbol{V}} = \left[{{v_0}, {v_1}, \cdots, {v_{n + 4}}} \right]$,参数$\alpha_1 $, $\alpha_2 $, $\beta_1 $, $\beta_2 $,可以定义一张拟三次均匀TC-B样条曲面

$ \begin{array}{*{20}{c}} {Q\left( {u,v} \right) = }\\ {\sum\limits_{i = 0}^m {\sum\limits_{j = 0}^n {{P_{i,j}}{B_i}\left( {u;{\alpha _1},{\beta _1}} \right){B_j}\left( {v;{\alpha _2},{\beta _2}} \right)} } } \end{array} $ (13)

式中,参数$u \in \left[{{u_3}, {u_{m + 1}}} \right]$$\mathit{v} \in \left[{{v_3}, {v_{n + 1}}} \right]$$B_i$($u$; $\alpha_1 $, $\beta_1 $)和 ${B_j}$($v$; $\alpha_2 $, $\beta_2 $)为由式(9)给出的带参数$\alpha_1 $, $\beta_1 $$\alpha_2 $, $\beta_2 $的分段形式的拟三次均匀TC-B样条基。而定义在子矩形域$u \in \left[{{u_i}, {u_{i + 1}}} \right] \subset \left[{{u_3}, {u_{m + 1}}} \right]$, $v \in \left[{{v_j}, {v_{j + 1}}} \right] \subset \left[{{v_3}, {v_{n + 1}}} \right]$上的子曲面片可以表示为

$ q\left( {u,v} \right) = \sum\limits_{k = i - 3}^i {\sum\limits_{l = j - 3}^j {{P_{k,l}}{B_k}\left( {u,{\alpha _1},{\beta _1}} \right){B_l}\left( {v,{\alpha _2},{\beta _2}} \right)} } $

也可以用局部参数表示成

$ \begin{array}{*{20}{c}} {{R_{ij}}\left( {s,t} \right) = q\left( {u\left( s \right),v\left( t \right)} \right) = }\\ {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k,j - l}}{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } } \end{array} $

式中

$u = u\left( s \right) = \left( {1 - \frac{2}{\mathsf{ π} }s} \right){u_i} + \frac{2}{\mathsf{ π} } s{u_{i + 1}}$; $s = \frac{\mathsf{ π} }{2}\cdot\frac{{u - {u_i}}}{{{h_u}}} \in \left[{0, \frac{\mathsf{ π} }{2}} \right];i = 3, 4, \cdots, m$; ${h_u} > 0$$u$向的节点区间长度;$v = v\left( t \right) = \left( {1 - \frac{2}{\mathsf{ π} }t} \right){v_i} + \frac{2}{\mathsf{ π} }t{v_{i + 1}}$$t = \frac{\mathsf{ π} }{2}\cdot\frac{{u - {u_j}}}{{{h_v}}} \in \left[{0, \frac{\mathsf{ π} }{2}} \right];$${\rm{ }}j = 3, 4, \cdots, n;{h_v} > 0$$v$向的节点区间长度;$N_k$, $N_l$为由式(9)给出的带参数$\alpha_1 $, $\alpha_2 $$\beta_1 $, $\beta_2 $的拟三次均匀TC-B样条基。称$q(u, v$)为拟三次均匀TC-B样条曲面,${R_{ij}}\left( {s, t} \right)$为拟三次均匀TC-B样条曲面片。

定理7  拟三次均匀TC-B样条曲面片的基{$N_k$($s$; $\alpha_1 $, $\beta_1 $)$N_l$($t$; $\alpha_2 $, $\beta_2 $)}$k$, $l$=0, 1, 2, 3具有非负性、规范性和线性无关性。

证明:对于曲面片非负性可由$N_k$($s$; $\alpha_1 $, $\beta_1 $)≥0,$N_l$($t$; $\alpha_2 $, $\beta_2 $)≥0得到证明;

对于规范性可由式(14)得到证明

$ \begin{array}{*{20}{c}} {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } = }\\ {\sum\limits_{k = 0}^3 {{N_k}\left( {s;{\alpha _1},{\beta _1}} \right)} \sum\limits_{l = 0}^3 {{N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} = }\\ {\sum\limits_{k = 0}^3 {{N_k}\left( {s;{\alpha _1},{\beta _1}} \right)} = 1} \end{array} $ (14)

对于线性无关性,考虑对任意${\xi _{kl}} \in R\left( {k, l = 0, 1, 2, 3} \right)$, $s, t \in \left[{0, \mathsf{ π} /2} \right]$,有

$ \sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{\xi _{kl}}{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } = 0 $

整理有

$ \sum\limits_{k = 0}^3 {{N_k}\left( {s;{\alpha _1},{\beta _1}} \right)} \sum\limits_{l = 3}^3 {{\xi _{kl}}{N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} = 0 $

$N_k$($s$; $\alpha_1 $, $\beta_1 $)($k$=0, 1, 2, 3)具有线性无关性,所以有

$ \sum\limits_{l = 0}^3 {{\xi _{kl}}{N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} = 0\left( {k = 0,1,2,3} \right) $

所以$ {\xi _{kl}} \in 0\left( {k, l = 0, 1, 2, 3} \right)$,可证。

除了变差缩减性以外,拟三次均匀TC-B样条曲线的性质均可以推广到拟三次均匀TC-B样条曲面上,如仿射不变性、规范性、凸包性以及局部控制性等,传统B样条曲面也含有该类性质,且这些性质容易证明,限于篇幅这里就不再赘述,下面证明拟三次均匀TC-B样条曲面特有的高阶连续性,即具有${\rm{C}}^{2n-1}$阶连续。

定理8  对均匀节点向量$\mathit{\boldsymbol{U}} = \left[{{u_0}, {u_1}, \cdots, {u_{m + 4}}} \right], $ $\mathit{\boldsymbol{V}}\left[{{v_0}, {v_1}, \cdots \ldots, {v_{n + 4}}} \right]$,当$\alpha_1 $, $\beta_1 $, $\alpha_2 $, $\beta_2 $∈[0, 1],拟三次均匀TC-B样条曲面$Q(u, v)$关于$u$$v$方向均不仅具有${{\rm{C}}^1}$, ${{\rm{C}}^2}$连续,而且具有${\rm{C}}^{2n-1}$($n$=1, 2, 3, …)连续。

证明:首先证明$u$方向的连续性。在非节点处性质显然成立,下面考虑在节点处的连续性。不失一般性,考虑曲面在过节点${u_{i + 1}}$的曲线段$\left[{{v_i}, {v_{i + 1}}} \right]$上的$u$方向的连续性。由曲面的定义可知,定义在区域 $\left[{{u_i}, {u_{i + 1}}} \right]$×$\left[{{v_i}, {v_{i + 1}}} \right]$$\left[{{u_{i + 1}}, {u_{i + 2}}} \right] $×$\left[{{v_i}, {v_{i + 1}}} \right]$上的曲面片分别为

$ \begin{array}{*{20}{c}} {{R_{ij}}\left( {s,t} \right) = q\left( {u\left( s \right),v\left( t \right)} \right) = }\\ {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k,j - l}}{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } }\\ {\left( {u,v} \right) \subset \left[ {{u_i},{u_{i + 1}}} \right] \times \left[ {{v_i},{v_{i + 1}}} \right]} \end{array} $

$ \begin{array}{*{20}{c}} {{R_{i + 1,j}}\left( {s,t} \right) = q\left( {u\left( s \right),v\left( t \right)} \right) = }\\ {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k + 1,j - l}}{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } }\\ {\left( {u,v} \right) \subset \left[ {{u_{i + 1}},{u_{i + 2}}} \right] \times \left[ {{v_i},{v_{i + 1}}} \right]} \end{array} $

所以

$ \begin{array}{l} q\left( {u_{i + 1}^ + ,v\left( t \right)} \right) = {R_{ij}}\left( {{\rm{ \mathsf{ π} /2}},t} \right) = \\ \sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k,j - l}}{N_k}\left( {{\rm{ \mathsf{ π} /2}};{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } \end{array} $

$ \begin{array}{l} q\left( {u_{i + 1}^ - ,v\left( t \right)} \right) = {R_{i + 1,j}}\left( {{\rm{0}},t} \right) = \\ \sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k + 1,j - l}}{N_k}\left( {s;{\alpha _1},{\beta _1}} \right){N_l}\left( {t;{\alpha _2},{\beta _2}} \right)} } \end{array} $

$ \begin{array}{l} \frac{{{\partial ^{2n - 1}}}}{{\partial {s^{2n - 1}}}}{R_{ij}}\left( {{\rm{ \mathsf{ π} }}/2,t} \right) = \\ \sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k,j - l}}{N_k}\left( {{\rm{ \mathsf{ π} }}/2;{\alpha _1},{\beta _1}} \right)N_l^{\left( {2n - 1} \right)}\left( {t;{\alpha _2},{\beta _2}} \right)} } \end{array} $

$ \begin{array}{l} \frac{{{\partial ^{2n - 1}}}}{{\partial {s^{2n - 1}}}}{R_{i + 1,,j}}\left( {0,t} \right) = \\ \sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k + 1,j - l}}{N_k}\left( {0;{\alpha _1},{\beta _1}} \right)N_l^{\left( {2n - 1} \right)}\left( {t;{\alpha _2},{\beta _2}} \right)} } \end{array} $

而由定理5的结论 $N_i^{(2n - 1)}(\mathsf{ π} /2) = N_{i + 1}^{(2n - 1)}\left( 0 \right)$($i$=0, 1, 2)和$N_3^{(2n - 1)}(\mathsf{ π} /2) = _0^{(2n - 1)}\left( 0 \right)$,经过简单的计算可得出$\frac{{{\partial ^{2n - 1}}}}{{\partial {t^{2n - 1}}}}{R_{ij}}(\mathsf{ π} /2, t) = \frac{{{\partial ^{2n - 1}}}}{{\partial {t^{2n - 1}}}}{R_{i + 1, , j}}(0, t)$,所以定义在区域$\left[{{u_i}, {u_{i + 1}}} \right]$×$\left[{{v_i}, {v_{i + 1}}} \right]$$\left[{{u_{i + 1}}, {u_{i + 2}}} \right] $×$\left[{{v_i}, {v_{i + 1}}} \right]$上的曲面片 ${R_{ij}}\left( {s, t} \right) $${R_{i + 1, j}}\left( {s, t} \right)$$u$方向上具有${\rm{C}}^{2n-1}$($n$=1, 2, 3, …)连续,进而当n=1时具有${{\rm{C}}^1}$连续。对${R_{ij}}\left( {s, t} \right) $${R_{i + 1, j}}\left( {s, t} \right)$求二阶偏导数有

$ \begin{array}{*{20}{c}} {\frac{{{\partial ^2}}}{{\partial {t^2}}}{R_{ij}}\left( {{\rm{ \mathsf{ π} }}/2,t} \right) = }\\ {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k,j - l}}{N_k}\left( {{\rm{ \mathsf{ π} }}/2;{\alpha _1},{\beta _1}} \right){{N''}_i}\left( {{\rm{ \mathsf{ π} }}/2;{\alpha _2},{\beta _2}} \right)} } } \end{array} $

$ \begin{array}{*{20}{c}} {\frac{{{\partial ^2}}}{{\partial {t^2}}}{R_{i + 1,,j}}\left( {0,t} \right) = }\\ {\sum\limits_{k = 0}^3 {\sum\limits_{l = 0}^3 {{P_{i - k + 1,j - l}}{N_k}\left( {0;{\alpha _1},{\beta _1}} \right){{N''}_i}\left( {0;{\alpha _2},{\beta _2}} \right)} } } \end{array} $

根据引理1有 ${N''_i}(\mathsf{ π} /2) = {N''_{i + 1}}\left( 0 \right) $($i$=0, 1, 2),${N''_3}(\mathsf{ π} /2) = {N''_0}\left( 0 \right)$,所以在区域$\left[{{u_i}, {u_{i + 1}}} \right]$×$\left[{{v_i}, {v_{i + 1}}} \right]$$\left[{{u_{i + 1}}, {u_{i + 2}}} \right] $×$\left[{{v_i}, {v_{i + 1}}} \right]$上的曲面片${R_{ij}}\left( {s, t} \right) $${R_{i + 1, j}}\left( {s, t} \right)$也具有${{\rm{C}}^2}$连续。进而可知TC-B样条曲面$Q(u, v)$关于$u$方向均有${{\rm{C}}^1 }$, ${{\rm{C}}^2 }$连续,而且具有${\rm{C}}^{2n-1}$($n$=1, 2, 3, …)连续。曲面关于$v$方向的连续性也可以类似的讨论,这里不再赘述。证毕。

3.4.2 曲面的应用

案例3  椭球面和球面的精确表示

拟三次均匀TC-B样条曲面可精确表示椭球面和球面。

${P_{k, l}}\left( {k, l = 0, 1, 2, 3} \right)$,则由式(13)有

$ \left\{ \begin{array}{l} x\left( {s,t} \right) = \sum\limits_{k = 0}^3 {\sum\limits_{l = 3}^3 {{N_k}\left( {{s_{k,l}};{\alpha _1},{\beta _1}} \right){N_l}\left( {{t_{k,l}};{\alpha _2},{\beta _2}} \right){x_{k,l}}} } \\ y\left( {s,t} \right) = \sum\limits_{k = 0}^3 {\sum\limits_{l = 3}^3 {{N_k}\left( {{s_{k,l}};{\alpha _1},{\beta _1}} \right){N_l}\left( {{t_{k,l}};{\alpha _2},{\beta _2}} \right){y_{k,l}}} } \\ z\left( {s,t} \right) = \sum\limits_{k = 0}^3 {\sum\limits_{l = 3}^3 {{N_k}\left( {{s_{k,l}};{\alpha _1},{\beta _1}} \right){N_l}\left( {{t_{k,l}};{\alpha _2},{\beta _2}} \right){z_{k,l}}} } \end{array} \right. $

而椭球面的参数方程为

$ \left\{ \begin{array}{l} x\left( {s,t} \right) = X + a\sin \left( s \right)\sin \left( t \right)\\ y\left( {s,t} \right) = Y + b\sin \left( s \right)\cos \left( t \right)\\ z\left( {s,t} \right) = Z + c\cos \left( s \right) \end{array} \right. $

当给定控制顶点$\alpha_1 $=$\alpha_2 $=$\beta_1 $=$\beta_2 $=0时,取控制顶点

$ \left( {\begin{array}{*{20}{c}} {{P_1}}&{{P_2}}&{{P_3}}&{{P_4}}\\ {{P_5}}&{{P_5}}&{{P_5}}&{{P_5}}\\ {{P_3}}&{{P_4}}&{{P_1}}&{{P_2}}\\ {{P_6}}&{{P_6}}&{{P_6}}&{{P_6}} \end{array}} \right) $

式中,${P_1} = \left( {X, Y + b, Z} \right)$${P_2} = \left( {X-a, Y, Z} \right)$${P_3} = \left( {X, Y-b, Z} \right)$${P_4} = \left( {X + a, Y, Z} \right)$${P_5} = \left( {X, Y, Z + c} \right)$${P_6} = \left( {X, Y, Z-c} \right)$;有$a, b, c$≠0,其中$s, t$∈[0, $\mathsf{ π}$/2]。若增加控制顶点到

$ \left( {\begin{array}{*{20}{c}} {{P_1}}&{{P_2}}&{{P_3}}&{{P_4}}&{{P_1}}&{{P_2}}&{{P_3}}\\ {{P_5}}&{{P_5}}&{{P_5}}&{{P_5}}&{{P_5}}&{{P_5}}&{{P_5}}\\ {{P_3}}&{{P_4}}&{{P_1}}&{{P_2}}&{{P_3}}&{{P_4}}&{{P_1}}\\ {{P_6}}&{{P_6}}&{{P_6}}&{{P_6}}&{{P_6}}&{{P_6}}&{{P_6}}\\ {{P_1}}&{{P_2}}&{{P_3}}&{{P_4}}&{{P_1}}&{{P_2}}&{{P_3}} \end{array}} \right) $

可以表示一个完整的椭球面;当$a=b=c$时可表示为一个完整的球面。图 6给出拟三次均匀TC-B样条曲面表示四分之一球面的情形。

图 6 拟三次均匀TC-B样条曲面表示的球面片
Fig. 6 Cubic uniform TC-B spline surface for spherical surface

案例4  旋转曲面的直接生成

$ \begin{array}{*{20}{c}} {{P_{i0}}\left( {{x_i},0,z} \right),{P_{i1}}\left( {0, - {x_i},{z_i}} \right)}\\ {{P_{i2}}\left( { - {x_i},0,{z_i}} \right),{P_{i3}}\left( {0,{x_i},{z_i}} \right)}\\ {{P_{i4}} = {P_{i0}},{P_{i5}} = {P_{i1}},{P_{i6}} = {P_{i2}}}\\ {\left( {i = 0,1,2, \cdots ,6} \right)} \end{array} $

式中,$P_{i0}$($i$=0, 1, 2, …, 6)可生成一条3维空间$yz$平面上与案例2中形状相同的控制多边形,则在上述控制顶点下,拟三次均匀TC-B样条曲面可以直接生成与图 5中相同的旋转曲面,其中图 7(a)对应图 5(b)图 7(b)对应图 5(d)

图 7 拟三次均匀TC-B样条曲面表示的旋转曲面
Fig. 7 Cubic uniform TC-B spline surface represent the rotating body((a) $\alpha $=$\beta $=0; (b) $\alpha $=$\beta $=1)

4 结论

传统文献对Bézier方法和B样条方法改进时,只关注于能否增加曲线灵活度以及是否能够逼近或精确表示某一类曲线、曲面,因而构造的曲线、曲面只保留了Bézier方法和B样条方法的一些基本性质,如凸包性、仿射不变性、对称性等,像变差缩减性、全正性、保形性等重要性质往往被忽略。鉴于传统改进方法的该类问题,本文从适合造型设计的保形性上出发,构造了一组最优规范全正基,并设计出具有高阶连续性的曲线曲面。另外还给出了大量的曲线曲面应用案例,这进一步说明了本文构造方法的适用性。为了设计出更加符合实际需求的造型,需要对曲线曲面的形状进行详细讨论,如尖点、拐点、重结点、凸性等,限于篇幅将另文叙述。

参考文献

  • [1] Boehm W. Rational geometric splines[J]. Computer Aided Geometric Design, 1987, 4(1-2): 67–77. [DOI:10.1016/0167-8396(87)90025-2]
  • [2] Farin G. Curves and Surfaces for Computer Aided Geometric Design:A Practical Guide[M]. 3rd ed. Boston: Academic Press, 1993: 37-104.
  • [3] Shi F Z. Computer Aided Geometry and Non-uniform Rational B-spline (Revised) CAGD & NURBS[M]. Beijing: Higher Education Press, 2013. [ 施法中. 计算机辅助几何设计与非均匀有理B样条(修订版)CAGD & NURBS[M]. 北京: 高等教育出版社, 2013.]
  • [4] Yu D S, Xu Y B, Zeng J X. A class of quasi-quartic trigonometric polynomial Bézier curves with double parameters and its extension[J]. Computer Engineering and Applications, 2013, 49(18): 180–186. [喻德生, 徐迎博, 曾接贤. 一类双参数类四次三角Bézier曲线及其扩展[J]. 计算机工程与应用, 2013, 49(18): 180–186. ] [DOI:10.3778/j.issn.1002-8331.1112-0347]
  • [5] Han X L, Zhu Y P. Curve construction based on five trigonometric blending functions[J]. BIT Numerical Mathematics, 2012, 52(4): 953–979. [DOI:10.1007/s10543-012-0386-0]
  • [6] Han X L. A class of trigonometric polynomial curves on four-point piecewise scheme[J]. Journal of Image and Graphics, 2002, 7A(10): 1063–1066. [韩旭里. 基于四点分段的一类三角多项式曲线[J]. 中国图象图形学报, 2002, 7A(10): 1063–1066. ] [DOI:10.11834/jig.2002010324]
  • [7] Han X A, Ma Y C, Huang X L. The cubic trigonometric Bézier curve with two shape parameters[J]. Applied Mathematics Letters, 2009, 22(2): 226–231. [DOI:10.1016/j.aml.2008.03.015]
  • [8] Yin C J, Tan J Q. Trigonometric polynomial uniform B-spline curves and surfaces with multiple shape parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(7): 1131–1138. [尹池江, 檀结庆. 带多形状参数的三角多项式均匀B样条曲线曲面[J]. 计算机辅助设计与图形学学报, 2011, 23(7): 1131–1138. ]
  • [9] Yan L L. Trigonometric curves and surfaces with shape parameter[J]. Journal of East China Institute of Technology, 2012, 35(2): 197–200. [严兰兰. 带形状参数的三角曲线曲面[J]. 东华理工大学学报:自然科学版, 2012, 35(2): 197–200. ] [DOI:10.3969/j.issn.1674-3504.2012.02.018]
  • [10] Xie J, Tan J Q. Quadratic hyperbolic polynomial curves with multiple shape parameters[J]. Journal of Image and Graphics, 2009, 14(6): 1206–1211. [谢进, 檀结庆. 多形状参数的二次双曲多项式曲线[J]. 中国图象图形学报, 2009, 14(6): 1206–1211. ] [DOI:10.11834/jig.20090631]
  • [11] Wu H Y, Zuo H. Quadratic non-uniform hyperbolic B-spline curves with multiple shape parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(7): 876–883. [邬弘毅, 左华. 多形状参数的二次非均匀双曲B-样条曲线[J]. 计算机辅助设计与图形学学报, 2007, 19(7): 876–883. ] [DOI:10.3321/j.issn:1003-9775.2007.07.011]
  • [12] Zhu Y P, Han X L. New trigonometric basis possessing exponential shape parameters[J]. Journal of Computational Mathematics, 2015, 33(6): 642–684. [DOI:10.4208/jcm.1509-m4414]
  • [13] Zhu Y P, Han X L, Liu S J. Curve construction based on four $\alpha $$\beta $-Bernstein-like basis functions[J]. Journal of Computational and Applied Mathematics, 2015, 273: 160–181. [DOI:10.1016/j.cam.2014.06.014]
  • [14] Chen Q Y, Wang G Z. A class of Bézier-like curves[J]. Computer Aided Geometric Design, 2003, 20(1): 29–39. [DOI:10.1016/S0167-8396(03)00003-7]
  • [15] Xu G, Wang G Z. AHT Bézier curves and NUAHT B-spline curves[J]. Journal of Computer Science and Technology, 2007, 22(4): 597–607. [DOI:10.1007/s11390-007-9073-z]
  • [16] Su B Y, Tan J Q. A family of quasi-cubic blended splines and applications[J]. Journal of Zhejiang University Science A, 2006, 7(9): 1550–1560. [DOI:10.1631/jzus.2006.A1550]
  • [17] Yan L L, Liang J F. A class of algebraic-trigonometric blended splines[J]. Journal of Computational and Applied Mathematics, 2011, 235(6): 1713–1729. [DOI:10.1016/j.cam.2010.09.016]
  • [18] Zhu Y P, Han X L. Curves and surfaces construction based on new basis with exponential functions[J]. Acta Applicandae Mathematicae, 2014, 129(1): 183–203. [DOI:10.1007/s10440-013-9835-2]
  • [19] Carnicer J M, Peña J M. Shape preserving representations and optimality of the Bernstein basis[J]. Advances in Computational Mathematics, 1993, 1(2): 173–196. [DOI:10.1007/BF02071384]
  • [20] Carnicer J M, Peña J M. Totally positive bases for shape preserving curve design and optimality of B-splines[J]. Computer Aided Geometric Design, 1994, 11(6): 633–654. [DOI:10.1016/0167-8396(94)90056-6]
  • [21] Kvasov B I. Methods of Shape-Preserving Spline Approximation[M]. London: World Scientific Publishing, 2000.
  • [22] Mazure M L. Which spaces for design?[J]. Numerische Mathematik, 2008, 110(3): 357–392. [DOI:10.1007/s00211-008-0164-8]
  • [23] Mazure M L. Quasi-Chebyshev splines with connection matrices:application to variable degree polynomial splines[J]. Computer Aided Geometric Design, 2001, 18(3): 287–298. [DOI:10.1016/S0167-8396(01)00031-0]
  • [24] Mazure M L. On dimension elevation in Quasi Extended Chebyshev spaces[J]. Numerische Mathematik, 2008, 109(3): 459–475. [DOI:10.1007/s00211-007-0133-7]
  • [25] Mazure M L. On a general new class of quasi Chebyshevian splines[J]. Numerical Algorithms, 2011, 58(3): 399–438. [DOI:10.1007/s11075-011-9461-x]
  • [26] Mazure M L. Quasi Extended Chebyshev spaces and weight functions[J]. Numerische Mathematik, 2011, 118(1): 79–108. [DOI:10.1007/s00211-010-0312-9]
  • [27] Bosner T, Rogina M. Variable degree polynomial splines are Chebyshev splines[J]. Advances in Computational Mathematics, 2013, 38(2): 383–400. [DOI:10.1007/s10444-011-9242-z]
  • [28] Ibraheem F, Hussain M, Hussian M Z, et al. Positive data visualization using trigonometric function[J]. Journal of Applied Mathematics, 2012, 2012(18): #247120. [DOI:10.1155/2012/247120]
  • [29] Hussain M, Saleem S. ${{\rm{C}}^1}$ rational quadratic trigonometric spline[J]. Egyptian Informatics Journal, 2013, 14(3): 211–220. [DOI:10.1016/j.eij.2013.09.002]
  • [30] Hussain M Z, Hussain M, Waseem A. Shape-preserving trigonometric functions[J]. Computational and Applied Mathematics, 2014, 33(2): 411–431. [DOI:10.1007/s40314-013-0071-1]
  • [31] Ibraheem F, Hussain M, Hussain M Z. Monotone data visualization using rational trigonometric spline interpolation[J]. The Scientific World Journal, 2014, 2014: #602453. [DOI:10.1155/2014/602453]
  • [32] Shi L H, Zhang G C. New extension of cubic TC-Bézier curves[J]. Computer Engineering and Applications, 2011, 47(4): 201–204.
  • [33] Wang G X, Zhou Z M, Zhu S M, et al. Ordinary Differential Equation[M]. 2nd ed. Beijing: Higher Education Press, 1983. [ 王高雄, 周之铭, 朱思铭, 等. 常微分方程[M]. 2版. 北京: 高等教育出版社, 1983.]
  • [34] Zhu Y P. Research on theory and methods for geometric modeling based on basis functions possessing shape parameters[D]. Changsha: Central South University, 2014. [朱远鹏.基函数中带形状参数的几何造型理论与方法研究[D].长沙: 中南大学, 2014.] http://cdmd.cnki.com.cn/Article/CDMD-10533-1014403350.htm
  • [35] Mazure M L. Blossoming:a geometrical approach[J]. Constructive Approximation, 1999, 15(1): 33–68. [DOI:10.1007/s003659900096]
  • [36] Mazure M L. Blossoming stories[J]. Numerical Algorithms, 2005, 39(1-3): 257–288. [DOI:10.1007/s11075-004-3642-9]
  • [37] Mazure M L. On a new criterion to decide whether a spline space can be used for design[J]. BIT Numerical Mathematics, 2012, 52(4): 1009–1034. [DOI:10.1007/s10543-012-0390-4]