Print

发布时间: 2017-10-16
摘要点击次数:
全文下载次数:
DOI: 10.11834/jig.170200
2017 | Volume 22 | Number 10




    图像处理和编码    




  <<上一篇 




  下一篇>> 





结构识别引导下的纹理抑制图像平滑
expand article info 邵欢1, 傅辛易2, 刘春晓1, 伍敏1, 龚辰1, 余宗杰1
1. 浙江工商大学计算机与信息工程学院, 杭州 310018;
2. 浙江工商大学管理工程与电子商务学院, 杭州 310018

摘要

目的 针对目前已有的纹理平滑方法难以在抑制强梯度和尺度变化纹理的同时保持完整结构的问题,提出一种结构识别引导下的纹理抑制图像平滑算法。方法 首先,结构与纹理的根本区别在于重复模式,结构应该是稀疏的,而纹理应该是一个有重复模式的区域,因此,通过对结构/纹理的多尺度分析,提取了对于结构/纹理具有辨别力的多尺度内变差特征;然后,借助支持向量机,对提取的特征样本点训练出一个结构/纹理分类器;就分类结果中存在的结构较粗、毛刺等问题,进一步对分类结果进行细化和剔除毛刺与孤立点的后处理操作,以获得最终的更为精细的结构识别结果;最后,提出结构引导下的自适应双边图像滤波算法,达到既能抑制强梯度和尺度变化的纹理又能保持结构完整性的图像平滑效果。结果 本文提出的多尺度内变差特征在支持向量机训练中达到了96.12%的正确率,结构引导下的图像滤波能够在保持结构的同时,有效地抑制强梯度和尺度变化的纹理细节。结论 本文算法在兼顾结构的保持和强梯度以及尺度变化纹理的抑制方面超越了已有的方法,对于结构提取、细节增强、图像分割、色调映射、图像融合和目标识别等众多技术领域的发展将具有较强的促进作用,体现了潜在的实际应用价值。

关键词

纹理抑制; 结构识别; 多尺度内变差; 强梯度纹理; 尺度变化

Structure recognition guided texture suppressing image smoothing
expand article info Shao Huan1, Fu Xinyi2, Liu Chunxiao1, Wu Min1, Gong Chen1, Yu Zongjie1
1. School of Computer Science & Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;
2. School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
Supported by: National Natural Science Foundation of China(61003188, 61379075); Natural Science Foundation of Zhejiang Province, China(LY14F020004)

Abstract

Objective Natural scenes generally contain different scale objects and textures, which carry rich information in regard to human perception.Texture usually signifies pixel values, which change with high frequency.Generally, images are composed of many important structures, texture, edges, etc.Therefore, mining the meaningful structure from textures or complex background images is a critical task in vision processing.The core of image smoothing lies in the separation of structure and texture.Effective preservation of the structure while suppressing the texture with strong gradient or varying scales is a challenging problem.Most of the existing image smoothing methods tends to deal with weak gradient texture images; if the texture gradient is strong, then these methods will fail.To solve the abovementioned problem, a structure recognition guided texture smoothing algorithm is proposed, which deals with the structure and the texture separately and detect structure before image smoothing. Method First, this paper argues that the fundamental difference between structure and texture is the repetition pattern.Particularly, the structure should be sparse and the texture should be a region with a repeating pattern.According to this characteristic, the discriminative features for distinguishing between structure and texture are designed and extracted based on the multi-scale analysis of inherent variation.At least two reasons are available for presenting the multi-scale approach.One reason is that structure and texture are relative.When the scale is small, the texture may not show up, and thus the scale needs to be enlarged and the essence of the texture is released.The other reason is that the texture in the image is diverse, and the adaptive scale in different regions is difficult.Furthermore, textures with various attributes may exist in the same image, a single scale can only solve the partial texture with the default scale parameter and the recognition of other textures will lose.Therefore, multi-scale analysis of inherent variation is proposed to ensure that different textures can display their own repetitive pattern attributes.Second, the core part in the field of pattern recognition is feature extraction.Therefore, the feature extracted must be more robust to guarantee the discrimination ability is strong enough and the stability is good enough.To obtain more accurate features, we need to consider the multi-scale inherent variation in the macroscopic view and grasp its general rules.After we analyze the trend of multi-scale inherent variation curves at different pixel locations, several discriminative features are extracted.Then, these features can be used for subsequent structural recognition.We regard the separation of texture and structure as a typical two-class issue, and the support vector machine is a classical two-class classification method.Compared with many existent machine learning methods, it is a relatively lightweight classifier, which can obtain desirable classification results without a large sample.Consequently, this paper prefers to use the support vector machine to distinguish the texture and structure, with the help of support vector machine, a classifier is trained with the extracted feature pixels, and utilized to classify structure and non-structure pixels efficiently.However, due to the block effect in edge compression and the computational mechanism of inherent variation, pixels nearby the structure will always be affected by the real structure and its multi-scale inherent variation curve is similar in structure.Hence, the support vector machine classification results cannot reach a single pixel.We observed large amounts of data and find that the non-structured pixel appeared symmetrically on both sides of the window.Although the support vector machine classification results are coarser, in the middle of the skeleton should be considered as the real structure.In this paper, a morphological thinning method is adopted directly to get a thinner structure, but the results of thinning still have some weakness.To dispose the shortcomings of the support vector machine classification results after thinning operation, we design two steps of post-processing work, including outlier rejection and deburring, which solve the burr and mistaken isolate.As such, the finer structure recognition maps can be obtained.Finally, based on the fine structure obtained in the previous step, a structure guided bilateral image smoothing method is put forward to remove texture while preserving structure. Result The multi-scale inherent variation features proposed in this paper achieve a correct rate of 96.12% with support vector machine, and our structure guided image smoothing results can effectively suppress the texture details with strong gradient or varying scales while preserving the structure.These excellent experimental results are compared to some results of previous methods, which reveal that the proposed methodology yields better image smoothing. Conclusion In view of the limitations of existing similar methods, this paper analyzes the characteristics of inherent variation deeply and proposes an algorithm to distinguish the structure and texture by means of multi-scale inherent variations.Based on the support vector machine classification results, a post-processing is used to obtain a finer structure recognition map.Then, a structure guided bilateral image smoothing method is applied to remove texture while preserving structure.Our algorithm outperforms the state-of-the-art image smoothing methods, especially for those images containing texture with strong gradient or varying scales, which could strongly promote such technical fields as structure extraction, detail enhancement, image segmentation, tone mapping, image fusion, and object recognition, which reflect the potential practical application values.

Key words

texture suppressing; structure recognition; multi-scale inherent variation; strong texture; varying scales

0 引言

在人类视觉感知中,图像通常是由结构、纹理和平滑区域三大部分构成。实际上,绝大多数的纹理只是起到丰富细节的作用,结构和平滑区域就足以清晰地表达图像的主要内容,因此保持结构的平滑图像有着很大的潜在应用价值。

图像平滑基本上可分为局部平滑和全局平滑两类。高斯滤波[1]是常用的局部平滑方法,它对去除服从正态分布的噪声很有效,但是不利于保持结构。Tomasi等人[2-4]在此基础上提出了双边滤波,在原有空间核的基础上加入颜色核,同时考虑空域信息和颜色相似性,这一操作使得平滑结果有了很大改善,结构保持较好,但是纹理信息依然无法抑制。Cho等人[5]在双边滤波的框架上提出块偏移的思想,称之为双边纹理滤波,可以抑制部分纹理,但是梯度较强的纹理会被误认为结构保持下来。Subr等人[6]提出了用平均的极值包络线来达到平滑的目的,对纹理抑制的效果有了改善但是整体并不平滑,而且容易产生偏色。Karacan等人[7]提出用区域协方差来区分结构纹理,但是可能会过度平滑结构。Zhang等人[8]通过尺度的深度剖析提出了一种迭代的双边滤波,采用先平滑再恢复结构的方法,但是随着迭代次数增多,结构会出现钝化和严重的偏色。

上述平滑方法基本属于局部的平滑方式,还有一类基于全局优化的角度来实现,要求平滑结果与输入图像差异较小,再加一些约束项保证平滑,两者相互权衡得到最佳结果。Rudin等人[9-10]提出了一种基于全变分的图像平滑方法,它以简单的梯度函数作为约束,对梯度较小的纹理和噪声有一定平滑效果。Farbman等人[11]提出了基于加权最小平方的图像平滑方法,其以梯度的二范式加权和来实现平滑功能,结果依然受限于梯度。Xu等人[12]提出一种基于图像梯度零范数(L0)的全局平滑方法,通过图像梯度的零范数最小化来实现图像的平滑处理,但其过分依赖图像梯度,导致对噪声缺乏鲁棒性,以及平滑的结果存在阶梯效应。Xu等人[13]又提出一种相对全变分(RTV)方法,该方法改进了原来的全变分(TV),考虑了纹理和结构在重复模式方面的差别,可以抑制强梯度的纹理,但无法抑制尺度变化的纹理以及保持结构完整。

综上所述,很多方法无法在抑制纹理的同时保持结构,为了解决该难题,提出了一种新的基于结构识别的图像平滑方法,通过结构的引导进行双边图像滤波,实现既能抑制强梯度和尺度变化的纹理,又能保持结构的效果。

1 本文算法

本文算法首先通过观察多尺度下内变差值$ L $的变化,如图 1所示,随着尺度$ {r_l} $的增加,内变差值$ L $具有分离结构和纹理的能力。因此以多尺度分析为基础,本文利用多尺度内变差值来提取特征,然后借助支持向量机(SVM)进行结构纹理的分类,接着在分类结果上做了3步后处理改善工作,最后采用结构引导下双边图像滤波方法消除局部滤波的光晕效应。图 2为本文算法的流程图。其中虚线框为离线SVM训练部分,实线框是算法在线流程,基于多尺度内变差的特征提取在这两部分都有涉及。

图 1 不同尺度下的内变差空间变化
Fig. 1 Spatial changes of inherent variation under different scales((a) input image; (b) $ L $ with $ {r_l} = 1 $; (c) $ L $ with $ {r_l} = 4 $; (d) $ L $ with $ {r_l} = 7 $)
图 2 本文算法流程图
Fig. 2 The flowchart of our algorithm

1.1 基于多尺度内变差的特征提取

借用内变差[13]来反映像素点$ p $的局部属性,定义为

$ L\left( p \right) = \frac{1}{{{n_c}}}\sum\limits_{c = 1}^{{n_c}} {\sum\limits_{d \in \left\{ {x, y} \right\}} {\frac{{\left| {\sum\limits_{q \in R\left( p \right)} {{g_{p, q}} \cdot {{\left( {{\partial _d}I} \right)}_q}} } \right|}}{{\sum\limits_{q \in R\left( p \right)} {{g_{p, q}}} }}} } $ (1)

式中,$ {R\left( p \right)} $是以$ p $为中心像素,半径为$ {r_l} $的矩形区域。$ \partial I $表示图像$ I $的梯度,$ d $代表方向,$ d = x $表示水平方向,$ d = y $表示垂直方向。$ c $定义为图像的通道数,对于灰度图像$ {n_c} = 1 $,对于彩色图像$ {n_c} = 3 $$ {g_{p, q}} $是高斯权值,定义为

$ {g_{p, q}} \propto {\rm{exp}}\left( { - \frac{{{{\left\| {p - q} \right\|}^2}}}{{2{\sigma ^2}}}} \right) $ (2)

式中,$ \sigma $控制窗口的空间尺度。Xu等人[13]认为同等情况下,纹理的$ L $值比结构小,以此可区分结构纹理。实际上,$ L $的区分能力很大程度上取决于$ {r_l} $,如$ {r_l} = 0 $,此时的$ L $就退化成梯度。图 1展示了芭芭拉图在不同尺度$ {r_l} $的内变差结果(为了便于观察,实验中对$ L $图进行了归一化),其中划线部分的曲线图更明确地表明了不同尺度对于$ L $的区分性的影响。但是寻找任意一幅图像的最佳尺度是很困难的,因此提出多尺度的内变差来识别结构。$ {r_l} $的动态范围设为$ 1-N $(实验中,取$ N=20 $)。由于尺度增大,原来的高斯权值逐渐失去作用,为此采用动态的$ \sigma $,定义为

$ \sigma = \alpha \cdot {r_l} $ (3)

式中,$ \alpha $是线性系数,保证高斯权值的有效性,在本文实验中,$ \alpha = 0.5 $。由此,可得到一组不同尺度下的$ L $,对于任意像素$ p $,定义集合

$ S\left( p \right) = \left\{ {{L_1}\left( p \right), {L_2}\left( p \right), \cdots, {L_N}\left( p \right)} \right\} $ (4)

式中,$ {{L_i}\left( p \right)} $表示像素$ p $$ {r_l} = i $时的$ L $值。为了减少偶然因素,这里的$ L $值计算采用了8邻域加权的均值。

测试大量的图像后发现,处在不同位置的像素$ p $,其$ S\left( p \right) $的规律具有较大的差别,如图 3所示。当像素$ p $落在近似平滑区域,其$ S\left( p \right) $曲线如图 3(b),该处$ L $值整体较小,曲线波动频繁;当像素$ p $处在结构上,其曲线如图 3(c)$ L $值整体较大,整体趋势递减;当像素$ p $处在结构附近的纹理上,其曲线如图 3(d),先下降,当尺度达到一定程度时上升;当像素$ p $处在纹理中心区域,则一直递减,降到很低,如图 3(e)所示。通过比较曲线图,发现结构图 3(c)和非结构图 3(b)(d)(e)有明显的差别:1) 折线的整体趋势,不是一直递减的一般都不是结构,如图 3(b)(d);2) 结构的曲线最低值一般大于非结构,如图 3(c)(e)。由此,提取任一像素$ p $的特征向量为

$ \mathit{\boldsymbol{f}}\left( p \right)\left[ 1 \right] = \left\{ \begin{array}{l} 1\;\;\;\;\;\forall {L_i}\left( p \right) \ge {L_j}\left( p \right)\& \& 0 < i < j \le N\\ 0\;\;\;\;\;其他 \end{array} \right.\\ \;\;\;\;\;\;\mathit{\boldsymbol{f}}\left( p \right)\left[ 2 \right] = {\rm{min}}\left( {{L_i}\left( p \right),i = 1,2, \cdots ,N} \right) $ (5)

图 3 多尺度内变差模式分析
Fig. 3 Mode analysis of multi-scale inherent variation((a) input image and partial enlarged images; (b) smooth region; (c) structure pixel; (d) texture near structure; (e) texture away from structure)

1.2 基于SVM和后处理的结构识别

支持向量机(SVM)[14]是机器学习领域里的一个经典有效的分类工具,本文用它来进行结构和非结构(包括纹理和平滑区域)的分类。事先人为地挑选出样本,特别是一些具有挑战性的像素点。图 4显示了两幅样本图像。为了便于观察,在梯度图上做了标记,结构和非结构像素分别标记为黄色和绿色。实验中挑选多幅图像的共5 000个正样本点和5 000个负样本点,提取它们的特征向量$ \mathit{\boldsymbol{f}} $作为训练数据。使用LIBSVM程序库[14],采用基本的c_svc模型[15-16],选择径向基函数(RBF)作为核函数,训练过程的交叉验证正确率可以达96.122 2 %,漏检率和误检率分别为0.24 %,3.64 %。这个结果非常理想,用它来进行图像结构非结构的分类是较为可靠的。对于给定的输入图像,用同样的方法提取特征向量,之后使用分类器预测,可得到一个初步的结构识别结果,如图 5(b)图 6(b)所示。

图 4 训练样本标记
Fig. 4 Training samples((a) sample images; (b) samples marking images)
图 5 蝙蝠侠图实例
Fig. 5 Batman image example((a) input image; (b) SVM classification result; (c) the post-processing result; (d) our result)
图 6 人脸图实例
Fig. 6 Face image example((a) input image; (b) SVM classification result; (c) the post-processing result; (d) our result)

由于内变差$ L $基于块的计算方式以及图像中可能存在的噪声和压缩块效应等瑕疵,SVM的分类结果不可避免的存在误识别的像素,造成结构变粗,以及出现毛刺和孤立点。观察发现,误识别的非结构像素总是在结构线条两边对称出现,因此可采用形态学的细化方法[17]去除这些像素。由于毛刺都是结构线条上较短的突起,因此首先寻找这些较短的线条,考虑到一些复杂的结构本身就是多分枝的,所以需要设置阈值进行控制,实验中大多数例子的阈值设置为10,对于长度小于10的线条予以剔除。由于噪声的影响,图像中会出现像素个数很少的孤立短线条,把其中像素个数少于5的短线条当做孤立点去除,结果如图 5(c)图 6(c)所示。

1.3 结构引导下的双边图像滤波

双边滤波器[5]是一种用于平滑图像和减少噪声的边缘保持滤波器。以此为基础,本文提出了一种结构引导下的双边图像滤波算法。首先,对于一幅输入图像$ I $,计算在不同的权重$ K $以及空间窗口$ \mathit{\Omega} \left( p \right) $下的高斯平滑引导图

$ {G_p} = \frac{1}{k}\sum\limits_{q \in \Omega \left( p \right)} {{\rm{exp}}\left\{ { - \frac{1}{2}\left( {\frac{{{{\left( {{p_x} - {q_x}} \right)}^2} + {{\left( {{p_y} - {q_y}} \right)}^2}}}{{K_p^2}}} \right)} \right\}} {I_q} $ (6)

式中,$ k $是归一化因子。像素$ q $属于以像素$ p $为中心的窗口$ {\Omega \left( p \right)} $内的像素。根据结构识别图,对结构像素分配较小的空间窗口$ {\Omega \left( p \right)} $及权重$ K $,对纹理像素分配较大的$ {\Omega \left( p \right)} $$ K $,目的在于保证结构不被过度平滑,同时又能抑制大部分纹理。本文对于结构和纹理像素的$ {\Omega \left( p \right)} $$ K $取值分别为3、0.75和19、4.75。

在获得引导图$ \mathit{\boldsymbol{G}} $后,利用双边图像滤波得到平滑结果图像

$ {S_p} = \frac{1}{k}\sum\limits_{q \in N\left( p \right)} {{g_{{\sigma _s}}}\left( {p, q} \right){g_{{\sigma _r}}}\left( {{G_p}, {G_q}} \right)} {I_q} $ (7)

式中,$ {{\sigma _s}} $为空域高斯函数系数,$ {{\sigma _r}} $为值域高斯函数系数。在大多数实验中$ {{\sigma _s}} $取4.5,$ {{\sigma _r}} $取0.15,窗口$ {N\left( p \right)} $为19×19。多数测试图像的纹理偏向于强梯度和变化的尺度,上述过程需要迭代。这里的迭代次数$ i \in \left\{ {10, 15} \right\} $,最终平滑结果如图 5(d)图 6(d)所示。

2 实验结果与讨论

本文算法采用MATLAB R2012a实现,PC处理器为Intel® CoreTM i5-3.2 GHz,内存4 GB,操作系统为64位Windows 7。

图 7图 8展示了本文算法与L0[12]、RTV[13]、BTF[5]以及Zhang等人[8]方法的运行结果。已有方法的运行结果使用了相应作者给出的代码,并通过调节参数使其达到最优。从给出的4个实例可以看出,对于强梯度以及尺度变化的纹理(如实例1的背景,实例2的花纹,实例3的木板和实例4的叶子和背景),L0对于强梯度纹理几乎全部保留下来;RTV可以抑制部分密集规则的纹理,但强梯度纹理会被当作结构保持下来;BTF多次迭代后对强梯度纹理的平滑有一定效果,但是同时会过度平滑结构;Zhang等人[8]的方法中,结构被模糊并且出现严重的偏色。本文算法在平滑具有强梯度和尺度变化的纹理图像时,既可以有效平滑纹理,又能保持结构信息,显示出了更好的效果。图 9展示了更多不同类型的图像平滑结果,也表明本文算法具有很强的适用性。

图 7 实例1、2纹理平滑算法对比图
Fig. 7 Comparison of texture smoothing methods in examples 1 and 2
((a) the input images; (b) L0[12]; (c) RTV [13]; (d) BTF [5]; (e) Zhang et al [8]; (f) ours)
图 8 实例3、4纹理平滑算法对比图
Fig. 8 Comparison of texture smoothing methods in examples 3 and 4
((a) the input images; (b) L0[12]; (c) RTV [13]; (d) BTF [5]; (e) Zhang et al [8]; (f) ours)
图 9 更多本文图像平滑效果
Fig. 9 More texture smoothing results with our algorithm((a) input images; (b) ours)

3 结论

针对同类方法的局限性,本文深度剖析内变差的特点,提出基于多尺度的内变差来提取特征以区分结构和纹理,然后借助SVM并设计了后处理手段,得到精细的结构识别图,最后提出结构引导下的双边图像滤波算法,取得了良好的平滑结果。本文算法在大量不同类型的测试图像上的实验结果均展示了良好的图像平滑效果,显示出具有较强的鲁棒性和普适性。该算法能够在抑制纹理的同时兼顾结构的保持,尤其在强梯度和尺度变化的纹理抑制方面显示了较高的优越性。它可以适用于结构提取、细节增强、图像分割、色调映射、图像融合和目标识别等众多图像处理技术领域中,将对这些技术的发展起到较强的促进作用,体现了潜在的实际应用价值。

然而,本文算法也有不足之处。由于SVM分类结果具有一定的宽度,这对于区分尖锐区域的结构像素带来了一定的难度。另外,多尺度内变差值特征的提取过程比较耗时,导致算法运行时间较长。接下来,希望进一步加入新的有效特征以识别出尖锐区域的精细结构像素,并进一步优化算法效率使其尽量达到实时响应速度。

参考文献

  • [1] Baek J, Jacobs D E. Accelerating spatially varying Gaussian filters[J]. ACM Transactions on Graphics, 2010, 29(6): #169. [DOI:10.1145/1882261.1866191]
  • [2] Tomasi C, Manduchi R.Bilateral filtering for gray and color images[C]//Proceedings of IEEE 6th International Conference on Computer Vision.Bombay, India:IEEE, 1998:839-846.[DOI:10.1109/ICCV.1998.710815]
  • [3] Weiss B. Fast median and bilateral filtering[J]. ACM Transactions on Graphics, 2006, 25(3): 519–526. [DOI:10.1145/1141911.1141918]
  • [4] Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 2009, 81(1): 24–52. [DOI:10.1007/s11263-007-0110-8]
  • [5] Cho H, Lee H, Kang H, et al. Bilateral texture filtering[J]. ACM Transactions on Graphics, 2014, 33(4): #128. [DOI:10.1145/2601097.2601188]
  • [6] Subr K, Soler C, Durand F. Edge-preserving multiscale image decomposition based on local extrema[J]. ACM Transactions on Graphics, 2009, 28(5): #147. [DOI:10.1145/1618452.1618493]
  • [7] Karacan L, Erdem E, Erdem A. Structure-preserving image smoothing via region covariances[J]. ACM Transactions on Graphics, 2013, 32(6): #176. [DOI:10.1145/2508363.2508403]
  • [8] Zhang Q, Shen X Y, Xu L, et al.Rolling guidance filter[C]//Proceedings of 13th European Conference on Computer Vision.Zurich, Switzerland:Springer, 2014:815-830.[DOI:10.1007/978-3-319-10578-9_53]
  • [9] Yu L H, Feng Y Q, Chen W F. Adaptive regularization method based total variational de-noising algorithm[J]. Journal of Image and Graphics, 2009, 14(10): 1950–1954. [余丽红, 冯衍秋, 陈武凡. 基于自适应正则化的全变分去噪算法[J]. 中国图象图形学报, 2009, 14(10): 1950–1954. ] [DOI:10.11834/jig.20091004]
  • [10] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1-4): 259–268. [DOI:10.1016/0167-2789(92)90242-F]
  • [11] Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics, 2008, 27(3): #67. [DOI:10.1145/1360612.1360666]
  • [12] Xu L, Lu C W, Xu Y, et al. Image smoothing via L0 gradient minimization[J]. ACM Transactions on Graphics, 2011, 30(5): #174. [DOI:10.1145/2024156.2024208]
  • [13] Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): #139. [DOI:10.1145/2366145.2366158]
  • [14] Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): #27. [DOI:10.1145/1961189.1961199]
  • [15] Boser B E, Guyon I M, Vapnik V N.A training algorithm for optimal margin classifiers[C]//Proceedings of the 5th Annual Workshop on Computational Learning Theory.Pittsburgh, Pennsylvania:ACM, 1992:144-152.[DOI:10.1145/130385.130401]
  • [16] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. [DOI:10.1007/BF00994018]
  • [17] Gonzalez R C, Woods R E.Digital Image Processing[M].3rd ed.Beijing:Publishing House of Electronics Industry, 2010:402-431.Beijing:Electronics Industry, 2012:402-431.